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ABSTRACT

With rising fuel costs there is an initiative to conserve fuel during flight. Several methods
have been proposed to calculate an optimum speed to fly during cruise flight to maximize
the range of a particular aircraft. This paper compares 11 of these methods using the same
aircraft model and discusses how to implement these techniques in an autothrottle. Alternative
implementations also include adding the algorithm to the Flight Management System to use
during flight planning, or to including it in the databases to use during dispatch calculations.
The results show that the speeds calculated by these methods are more fuel efficient than the
usual cruise operating speed.

Since flying at the optimum speed is not always practical, this research also looked at the
design of the industry autothrottle. Improvements to the industry autothrottle speed control
law were implemented to see if improvements to fuel consumption could be achieved at any
speed. The results show that the improvements proposed did not improve the fuel consumption
during the conditions simulated.
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CHAPTER 1. OVERVIEW

Just as a car’s fuel-mileage is important to the driver’s budget, an airplane’s fuel consump-

tion is important to each commercial airline’s budget. Rising fuel costs have impacted everyone

and greenhouse gas emissions are increasing the impact of global warming around the world.

Decreasing the fuel consumption will help both of these problems. Additionally, as some cars

have cruise control, some airplanes have automatic throttle control as well. The automatic

throttle control in an airplane is called an autothrottle and is usually included as part of the

Automatic Flight Control System (AFCS). The AFCS also includes the flight guidance, au-

topilot, and yaw damper computers. The flight guidance computer calculates commands to

help the crew navigate through each phase of flight. The autopilot and yaw damper take the

commands from the flight guidance computer and adjust the airplane’s surfaces to follow the

commands. More detail about the control references of the autothrottle, flight guidance, and

autopilot modes is included in Section 1.3.2.

The longest phase of flight for most commercial airplanes is the cruse phase at a constant

altitude; in this phase the autothrottle is the AFCS function that is responsible for tracking

the speed command input from the crew. Research to improve the range of the aircraft has

also been concentrated to this phase of flight as well. The methods proposed have included

finding an airspeed corresponding to the maximum point in the range equation, finding an

optimal controller to follow a singular arc, and finding an optimal bang-bang controller.

The maximum range equation has several terms; it is used to find the speed corresponding

to the maximum point. Several different speeds have been found by assuming that some

terms in the range equation are not dependent on speed. These proposed methods take more

information into consideration than the normal cruise speed currently specified by the aircraft

manufacturer. The constant speeds calculated with this method could be used in current
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aircraft and in controlled airspace, provided they are within a range to maintain spacing in

traffic.

The two optimal controllers, singular arc and bang-bang, are also designed to maximize

range. The singular arc is a curve of weight vs. speed to define a similar speed as the previous

equations for the constant speeds corresponding to maximum range [27]. The thrust to fly this

curve is also determined. However, in controlled airspace the varying speed in this model may

not be practical. The bang-bang controller sets the throttles to minimum thrust or maximum

thrust based on switching points [18]. This controller design allows the speed and altitude to

vary which is also not practical for controlled airspace. From the published research, it is not

evident that either of these approaches has been implemented in a practical system.

This research focuses on implementing 11 methods proposed in the literature on the same

airframe using the same techniques that are currently used in industry. The results of several of

the methods presented can be implemented on a current system by adjusting the appropriate

constants to match to the target airframe. Additionally, modifications to the current industry

autothrottle were investigated to try to improve fuel consumption at any speed.

1.1 Hypotheses

The first hypothesis to be tested is that there is one particular airspeed for an airplane to

fly that is more efficient than any other. There have been several different methods proposed

in the literature for calculating an optimum speed for an airplane. To test this hypothesis

each of these methods will be compared using the same aircraft simulation. The practical

implementation and automation of these methods will also be considered, including tracking

the speed with an industry autothrottle.

The second hypothesis to be tested is that improvements can be made to an industry

autothrottle that can help save fuel at any speed. Reducing the amount of throttle activity

may increase decrease fuel consumption. To test this hypothesis, techniques to reduce throttle

activity will be applied to the industry standard autothrottle control law. To account for one

of the nonlinearities of this system, gain scheduling is used in the design of this control law.
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1.2 Significance to industry

The outcomes of these hypotheses are important because the air transport industry is

extremely competitive and rising fuel costs have impacted every operator. Even small changes

in aircraft performance and fuel efficiency can have a cumulative large impact on operating

costs. Approximately 81.5 billion US dollars were spent on fuel for aviation in 2006 [17]. The

data in [4] shows that there were 10.2 million domestic and international flights operated by

U.S. carriers in 2008. This number dropped 6.6 percent in 2009, for a total of 9.6 million

domestic and international flights operated by U.S. carriers [5]. In addition to fuel costs,

carbon trading schemes for aircraft will be implemented, mostly in Europe, by 2012 [17].

For commercial flights, the majority of flight time is spent is the cruise phase, and as a

result, much research has been focused on fuel savings during this phase of flight. Yet, most

of this research has been theoretical and has not been applied in industry. One proposed fuel

saving method is to use an optimal singular arc flight path. This path would increase the

range of the aircraft by seven percent, however, it is not practical to fly using this method

in controlled airspace because of the changing airspeed [27]. The ideal solution for controlled

airspace is a flight path with constant altitude and an optimum Mach number [26], [18], [10].

Such a Mach number can increase the range from two percent [26], [18] to six percent [10].

An autothrottle is a feature that may be included in an Automatic Flight Control System

(AFCS) of an airplane. According to Bader, “the purpose of the Autothrottle is to enhance the

ease, economy, and safety of flight operations” [8]. The autothrottle is designed to control the

throttle position from takeoff through landing to reduce pilot workload. Since the autothrottle

is controlling speed during the cruise phase of flight, allowing the autothrottle to compute

the optimum Mach number and hold that value could be a practical way to implement this

proposed fuel saving technique.

Jet engines, like other combustion engines, emit carbon dioxide into the atmosphere [17].

This CO2 can remain in the atmosphere for approximately 100 years [17]. The other major

emissions are nitrogen oxides, water vapor, sulphur oxides, and soot [25]. From 1990-2005, the

emissions from international aviation decreased by 40 percent [25]. Three changes led to this
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decrease: air traffic management, improvements of aircraft and engine design, and an increase

in load factors (using an aircraft to capacity) [25]. Because of the growth in the industry during

the same period, the total amount of emissions still increased during this same period [25]. The

aviation industry is projected to continue to grow about five percent per year until 2025 [25].

While aviation is not presently a significant contributor to the total amount of greenhouse

gases, steps to reduce emissions should still be considered [25].

1.3 Background

To understand the system to be controlled, background information on the aerodynamics of

an airplane, the uses in practical flight, and existing autothrottle control systems was reviewed.

The aerodynamics of the airplane describes the physical characteristics of the plant to be

controlled. Additionally, a metric used to calculate fuel consumption is the range an aircraft

can travel. The practical flight background provides constraints on the system based on how

a typical commercial flight is flown. The existing autothrottle controllers provide a starting

point for this research.

1.3.1 Aerodynamics

Both aerodynamic and engine performance equations combine to fully describe aircraft

performance. In addition to the aircraft manufactures’ published speed and maximum range for

a particular model, much research has been done to try to improve the advertised performance

of cruise flight. For instance, the research in [26] and [12], focused on the flight conditions that

could increase the cruise range performance.

Two coordinate systems that are used when studying aircraft. The first system is the

traditional, right-handed earth coordinate system with the x-axis pointing north, the y-axis

pointing east, and the z-axis pointing down. The second coordinate system rotates with the

aircraft. The x-axis points out the nose, the y-axis out the right wing, and the z-axis points

down. Rotation of the aircraft about the x-axis is called roll; rotation about the y-axis is called

pitch; and rotation around the z-axis is called yaw. A depiction of this rotation is shown in

Figure 1.1 [6].
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(a) Roll rotation (b) Pitch rotation (c) Yaw rotation

Figure 1.1: Aircraft axes of rotation

The equations to define the aerodynamics of the cruise phase of flight can be split into

equations of motion and range equations. The equations of motion define physics-based equa-

tions of the flight condition and the range equations define the range the aircraft can fly under

current conditions.

1.3.1.1 Equations of motion

The forces acting on an airplane can be classified into four groups. The first is the weight

of the aircraft and the direction is down in earth coordinates. The opposing force to weight

is the aerodynamic lift on the airplane, in the negative direction of the aircraft z-axis. The

lift force is produced by the airfoil-shaped wings and tail on the aircraft. The third force

is produced by the jet engines attached to the airframe. Some airplanes have their engines

attached to the wings, however in the case studied here the engines are attached to the rear

of the fuselage near the tail, symmetrically placed on either side of the x-axis. If both engines

are operating, the direction of the thrust force is approximately parallel to the fuselage, in the

positive x-direction of the aircraft. Opposing this force is the aerodynamic drag. Drag force is

produced by the aircraft and changes in the position of the surfaces, such as elevators, ailerons,

spoilers, and stabilizers.
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The equations for the forces in each direction acting on the airplane are [28]:

m(U̇ − V R+WQ) = −mgsinΘ + FAx + FTx

m(V̇ + UR−WP ) = mgsinΦcosΘ + FAy + FTy

m(Ẇ + UQ− V P ) = mgcosΦcosΘ + FAz + FTz

(1.1)

In these equations FA is the aerodynamic force in the direction specified by the subscript,

including both lift and drag, FT is the force of thrust in the direction specified by the subscript.

The speeds in the x, y, and z direction are U , V , and W respectively. The rates of rotation are

P , Q, and R, which represent roll rate, pitch rate, and yaw rate respectively. The acceleration

due to gravity is g and the mass of the aircraft is m. The pitch angle is represented by Θ and

the roll angle by Φ. The equations for the moments about each axis of the airplane are [28]:

IxxṖ − IxzṘ− IxzPQ+ (Izz − Iyy)RQ = LA + LT

IyyQ̇+ (Ixx − Izz)PR+ Ixz(P
2 −R2) = MA +MT

Izz − IxzṖ + (Iyy − Ixx)PQ+ IxzQR = NA +NT

(1.2)

In these equations, I is the inertia and the variables L, M , and N are the aerodynamic and

thrust moments about the x, y, and z-axis respectively.

For aircraft flying in the cruise phase, the aircraft is assumed to be in rectilinear flight [28].

In this phase several rates and moments can be assumed to be small. The rates of rotation (P ,

Q, and R) are approximately zero. The flight is assumed to be with wings level (not turning),

therefore Φ = 0. In this case the engines are parallel to the x-axis, therefore FTz = 0. Altitude

is also assumed to be constant, so V is also zero. With these assumptions, the equations

of motion in 1.1 and 1.2 can be simplified to the be the forces in the x-direction. In some

cases the change in weight can be neglected, although when looking at long flight durations

weight change as fuel is used can be a factor. When considering the change in weight a second

equation can be added. In this condition, [27] defines the equations of motion as follows:

U̇ = (FTx − FAx)/m

ṁac = −ṁf

(1.3)
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where the fuel flow rate is ṁf . The following assumptions were used when deriving the equa-

tions of motion in [27]:

FTx(U) = δTM (U, h)

ṁf (U) = cT (U)FTx(U)

FAx = AU2 +BL2/U2

(1.4)

here

L = mg = W

A = CD0(ρS/2)

B = (2K/ρS)

(1.5)

In these equations, CD0 is the zero-lift drag coefficient, K is the induced drag factor, ρ is the

air density, and S is the wing area, all assumed to be positive constants during cruise flight.

The throttle setting is defined as δ, where δmin ≤ δ ≤ 1 and TM is the maximum thrust. The

induced drag factor, K, is defined as [26]:

K =
1

πeAR
(1.6)

In this equation, the aspect ratio of the wing, AR, is defined as the wing span squared divided

by the wing area (b2/S) and e is the Oswald span efficiency factor.

1.3.1.2 Definition of range

In addition to the plant model, a measure of the performance of the aircraft should also be

derived, in this case the desired output is the range traveled by the aircraft. In [26], range in

nautical miles is a defined function of true airspeed in knots, U , lift-to-drag ratio, L/D, thrust

specific fuel consumption (TSFC) in pound per hour per pound, cT , and aircraft weight, W ,

as follows:

R =

∫ Wfinal

Winitial

U

cT

(
L

D

)
dW

W
(1.7)

If speed, lift-to-drag ratio, and TSFC are assumed to be constant with respect to weight,

Equation 1.7 can be simplified to:

R =
U

cT

(
L

D

)
ln

(
Winitial

Wfinal

)
(1.8)
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In [27] and [12] variations of Breguet equation are used for range. The derivation of this range

equation starts with the following definition of lift-to-drag ratio:

L

D
= 2Em0

µ2w

µ4 − 2k2Eµ0wµ
2 + w2

(1.9)

where w is the ratio of the current aircraft weight to the aircraft weight at the start of cruise,

Em0 is the maximum lift-to-drag ratio defined by [12]:

Em0 =
1

2
√
k1CD0

, Em =
1

2
√
k1CD0 − k2

(1.10)

and µ = M/Mmd0 , where Mmd0 is the minimum drag Mach number for the initial conditions

of cruise flight defined as [12]:

Mmd0 =

(
k1
CD0

) 1
4
(

2W0

γpS

) 1
2

(1.11)

In these equations, k1 and k2 are both induced drag factors, and γ is the specific heat ratio

for air. For a stable condition,µ ≥ 1 can be used. Equation 1.9 can be substituted in to

Equation1.7. After solving the resulting integral, the non-dimensional range is [12]:

R = µ1−β

[
tan−1

√
Em
Em0

ζµ2
√

1 + k2 + Em0

µ4 − (2− ζ)k2Em0µ
2 + (1− ζ)

]
(1.12)

where ζ is the cruise fuel weight fraction defined as:

ζ = (W0 −W1)/W0 (1.13)

A third definition of range is found in [10]:

R =
2UEmax
cT

tan−1

[
ζE0

2Emax(1−KCL0ζE0)

]
(1.14)

Here E is the lift-to-drag ratio, the subscript 0 indicates the initial condition and the subscript

max indicates the maximum value. The variable U is the airspeed, and CL0 is the initial

coefficient of lift.

1.3.1.3 Engine

The engine is also an important part of the plant of this system, as such its characteristics

are also important. In some situations TSFC is assumed to be constant for all thrust levels [9].
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Actual engine data provided in [26] indicates that this is really not the case. This data shows

that at full throttle TSFC does not vary much with speed, but at lower throttle settings TSFC

varies considerably with speed. TSFC is the fuel consumption rate in pounds per hour for each

pound of thrust produced. Both [26] and [10] define TSFC as follows:

cT = cT0M
β (1.15)

where β, for turbofan engines, varies from 0.4 to 0.7 for high-bypass ratios and from 0.2 to 0.4

for low-bypass ratios. The term cT0 is the reference TSFC for the current altitude, [10] defines

this parameter as follows:

cT0 = c∗T (M∗
CR)−β (θ/θ∗)1/2 (1.16)

where θ is the relative temperature and the ‘*’ superscript indicates the cruise TSFC, Mach

number, and relative temperature specified by the engine manufacturer.

1.3.2 Practical flight

Since the practical implementation of this system was considered in this research, back-

ground information on the practical application is included. A description of the phases of

flight that the AFCS is used and what term is being controlled by that system during that

time is included. Also, there are restrictions placed on aircraft flying in controlled airspace by

Air Traffic Control (ATC).

1.3.2.1 Phases of flight

Business jet autothrottle application design goals were established to maximize passenger

comfort and minimize unneeded response to temporary environmental variations [8]. Table 1.1

below, is a description of autothrottle and the interaction with the other AFCS functions for

each phase of flight [8].
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Table 1.1: Basic Autothrottle Functions Over the Flight Profile

Flight Phase Flight
Director
Mode

Autothrottle
Function

Autopilot
Function

1 Takeoff Takeoff Maximum rated
thrust

N/A

2 Climb-out Flight Level
Change

Takeoff to Climb
thrust transition

Airspeed Control

3 Small-step
Climb

Flight Level
Change

Reduced climb
thrust for smooth
transition

Airspeed Control

4 Large-step
Climb

Flight Level
Change

Full climb thrust Airspeed Control

5 Top-of-Climb Altitude
Capture

Transition to
airspeed control

Altitude Capture

6 Cruise Altitude Hold Airspeed control Altitude Hold

7 Top-of-Descent Flight Level
Change

Transition to
minimum thrust

Airspeed Control

8 Descent Flight Level
Change

Maintain minimum
thrust

Airspeed Control

9 Approach Glideslope
Track

Airspeed control Glideslope Track

10 Landing N/A Disengage Disengage

11 Go-Around Go-Around Maximum rated
thrust

Disengage

The timing of each of these phases of flight is usually imposed by ATC when the flight plan

is filed and with enroute instructions. These enroute instructions can have and impact on fuel

consumption.
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1.3.2.2 Air traffic control

It is the responsibility of ATC to provide clearances to the crew based on known traffic

and physical airport conditions. Section 4 of [16], states that ATC may clear an aircraft to a

different altitude or route due to traffic conditions. In certain congested areas, ATC may also

reroute an aircraft onto a preferred route in order to increase traffic capacity. Each pilot is

expected to follow the clearances provided by ATC, unless an amendment to the clearance is

obtained. In section 4-4-12, it is explained that ATC may issue speed adjustments to maintain

required spacing between aircraft. While complying with a speed adjustment from ATC, the

crew must maintain a speed within plus or minus 0.02 Mach number of the speed specified,

unless this is outside the safe operating speed of the aircraft.

Changes to this policy could improve fuel efficiency. Approximately 6-12 percent of fuel

burned could be saved by more efficient flight plans and decreasing holding patterns [13]. In [11]

the impact on fuel consumption when a faster airplane follows a slower airplane is analyzed

for a range of 100 nautical miles and three different altitudes. This research showed that an

aircraft’s performance can be reduced by up to 11 percent when forced to follow a slower

airplane. The Federal Aviation Administration (FAA) has proposed a new set of rules for air

traffic management that will be rolled out completely by 2025 [14]. These new rules include

“Reduce interaction between dependent flows in multiplex airspace,” which means that the

slower aircraft would be flying in a different traffic flow from the faster airplanes helping to

address the impact of faster aircraft following slower aircraft [14].

1.3.3 Autothrottle

Now that the types of controllers, the plant that is being controlled, and the practical use of

the system have been described some background on the current autothrottle implementations

are provided. There are two types of throttle control proposed in literature. First is a Total

Energy Control System (TECS) that combines pitch and throttle control into one multi-input

multi-output (MIMO) control law. The second is a single-input single-output (SISO) archi-

tecture that has two separate control laws for pitch and throttle. The thrust output of these

control laws is a throttle rate command, which is sent to a servo inside the throttle quadrant
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assembly (TQA) to move each throttle [20]. This gives the pilot visibility as to what the

autothrottle is commanding. This visual feedback was not provided on the A320, a survey of

the pilots of this aircraft was conducted, while not having back driving the throttles had some

advantages, it was concluded that providing movement of the throttles was preferred [23]. For

both types of thrust control, the FAA defines the normal performance criteria to be “smooth

and accurate control of thrust without significant or sustained oscillatory power changes or

excessive overshoot of the required power setting” [15]. Each of these systems has different

design approaches as well as some advantages and disadvantages.

1.3.3.1 Total energy control system

The multi-input multi-output control design is based on a philosophy of controlling all of

the energy in the longitudinal axis with one control law, because thrust and pitch changes are

tightly coupled [19]. If the elevator is used to hold flight path and the throttle is used to hold

speed independently, a movement of the elevator can cause a speed deviation if the throttle

is held constant and conversely a movement of the throttle can cause a pitch deviation if the

elevator is held constant. This inter dependency has led to research of the MIMO system that

controls both elevator and throttle concurrently with the same control law, allowing both to

coordinate movement for each maneuver. In the longitudinal axis of the aircraft the energy of

the system is the sum of kinetic and potential energy [19]:

Etotal = PE +KE = mgh+ 1/2mv2T (1.17)

where vT is the true airspeed of the aircraft and h is the height of the aircraft. The rate of

change of energy can be found by taking the derivative of the above equation [19]:

∂Etotal
∂t

= mgḣ+mvT v̇T (1.18)

Then this equation can be normalized with weigh and velocity [19]:

Etotalnorm =
ḣ

v
+
v̇T
g

= γ +
v̇T
g

(1.19)
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From this equation the thrust required is derived, assuming a point mass equation of motion

[19]:

Treq = mg

(
sinγ +

v̇T
g

)
+D (1.20)

To simplify this equation, assume a small flight path angle, γ, and steady level flight. Therefore

thrust equals drag and the equation can be expressed using the change in thrust required for

a maneuver [19]:

∆Treq = mg

[
∆γ + ∆

(
v̇T
g

)]
(1.21)

In the TECS the throttle is used to control the change in total energy and elevator is used

to control the distribution between kinetic and potential energy [19]. The coordination of

these two controls brings the total energy rate and energy distribution rate to zero at the

same time. When the airplane is holding altitude and a change in speed is requested, the

two commands work together to change the state of kinetic energy while the potential energy

remains constant. The potential energy remains the same in this case because the altitude

should remain constant. A block diagram of this system is provided in Figure 1.2 [19]. The

TECS is designed to allow for situations when the system has reached a thrust limitation.

Each phase of flight is designed to have pitch or speed as a priority so that when both cannot

be achieved within the thrust limits the term that is most important can be controlled using

pitch. In the system described: approach and go around used pitch priority and altitude and

pitch modes used speed priority. When the system is in speed priority mode, the cross-term

is cut allowing the pitch controller to control to the target speed and pitch angle is open loop,

conversely, in pitch priority the pitch controller is used to control glideslope or go around path

while speed remains open loop. As soon as thrust is back within the limits of the engine

controller, the TECS returns to the original configuration.
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Figure 1.2: TECS block diagram

In [7] a modification to the above system is proposed to deal with significant nonlinearities

in the system, including sudden maneuvers and significant winds such as microbursts and wind

gusts. To analyze this system, equations to balance the energy of the aircraft, engine, and the

surroundings was derived. In the first TECS changes in drag were neglected, the modified

energy control system (MECS) proposes that a ∆D term be added as a corrective term. The

simulated results of the MECS show that there is improved performance with this corrective

term, especially when tracking the glideslope on an approach [7].

1.3.3.2 Separate autothrottle control system

There are two basic closed-loop functions in the SISO autothrottle: thrust control and

airspeed control. During the cruise phase of flight, the autothrottle is in a speed-hold mode.

In this mode the autothrottle control law commands the throttles to hold the selected air-

speed. Figure 1.3 shows a simple autothrottle airspeed loop. In Figure 1.3 Ku represents

the autothrottle control law [29]. The throttle servo block is a model of the mechanical servo

inside the TQA [29]. The engines are modeled with a gain, KT , of throttle position to thrust
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(lbs/degree) and a lag [29]. The last block of the plant is the transfer function of thrust to air-

speed, which is a simplified model of the airplane dynamics [29]. The feedback of the airspeed

includes another lag to model the filtering present inside the air data sensor [29]. In [8] the

design of this control law for the Gulfstream IV is explained. Prior to the autothrottle control

loop, the airspeed target is input into the speed command processor, ensuring that maximum

speed limits are not violated and that target transitions are smooth. Within the closed loop

airspeed controller, measured airspeed is complemented with inertial acceleration to reduce

the effects of unwanted high frequency noise such as wind [8]. To compensate for changes in

configuration, aircraft drag information is also included in the control law [8]. Another design

parameter is acceleration and deceleration programming configured to smoothly capture the

airspeed target [8]. A combination of these features, plus appropriate closed-loop gains, ensure

minimal throttle activity with accurate speed control [8]. The last closed loop controller in

this mode is an Engine Pressure Ratio (EPR) inner loop. This loop provides more stability

and accuracy during speed hold. After applying a lead-lag compensation to the airspeed error,

an EPR rate command is computed [8]. The EPR command is adjusted for changes in drag

and flight path angle. After the adjustments are made, the EPR command is bounded by the

engine limits [8]. From this EPR command a proportional throttle command is calculated.

When a Full Authority Digital Engine Control (FADEC) is used a trim command could be

sent directly to the engine control to make small adjustments to the EPR without moving the

throttles [8]. Because of safety concerns, the authority of this command is limited [8].

Figure 1.3: SISO autothrottle block diagram
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According to [8], a major design compromise is represented by balancing control accuracy

and dynamic response with throttle activity. A typical flight crew makes steady and infrequent

movements of the throttles, and the autothrottle is expected to mimic this behavior. Passenger

comfort is also taken into consideration, since they are able to hear adjustments to the engines

and feel changes to aircraft accelerations. Since high-altitude cruise can be the longest phase

of flight, passenger comfort and minimal throttle activity was considered to be the top priority.

While controlling airspeed, a wind gust can create a speed error equal in magnitude to that

of the gust. However, given the bandwidth of this loop, adjusting throttles to compensate for

winds, especially turbulence, could cause continuous cycling of the throttles. In this situation

the crew would set the throttle to a nominal position [8].

There are advantages and disadvantages of each type of system. The TECS results showed

that in simulation, the system was stable and predictable for the conditions tested [19]. The

speed was held within 1 knot during altitude changes and altitude deviation was only 10 feet

during speed changes [19]. However, the TECS system would require a significant change from

current industry designs [19]. For the separate autothrottle the system has a modular architec-

ture and can operate independently of the pitch maneuvers and be developed independently

of the flight guidance system [8]. Some coupling terms can be added to the SISO system

such as flight path angle and flap position, this would move closer to the MIMO design but

with the modular design of the separate autothrottle [8]. Even though the MIMO system has

shown good performance in simulation, the separate autothrottle design has had acceptable

performance in aircraft since the Gulfstream IV certification in December 1989 [8].
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CHAPTER 2. CONTROLLER AND REFERENCE DESIGN

As discussed, the airline industry is interested in saving fuel and reducing pilot workload.

The autothrottle is part of the AFCS that helps reduce pilot workload by controlling each

engine’s throttle. The system that is controlled by the autothrottle is nonlinear; one method

considered for autothrottle control law is gain programming. Optimal control is another design

methodology used in this research. The design for this application using each of these control

methodologies is described. Additionally, the speeds proposed to maximize the range of the

aircraft are used to calculate the reference signal used by the autothrottle airspeed control law.

2.1 Gain programming control laws

Gain scheduling is one technique of nonlinear control law design that is used in the flight

control and automotive industries [30]. Gain scheduling in autopliots has been used since

World War II due to the stability problems in jet aircraft, and increased operating envelopes.

One form of gain scheduling is switching gains based on a predetermined time or operating

condition. Another form of gain scheduling is to continuously change the controller coefficients

based on a scheduling variable or signal. These scheduling variables may be external to the

system or feedback from the plant. One feature of gain scheduling is the ability to use well-

known linear design techniques. Another feature is that exact definition of the plant does need

to be determined for the entire operating envelope. Additionally, the computational resources

required to calculate a control law with scheduling techniques are usually less than with other

nonlinear approaches. The scheduled gains can change quickly with the changing parameters of

the plant. Also, most performance criteria is defined by frequency and time-domain parameters

that can be easily determined from a gain-scheduled control law.

In autopilot design, the loop gain is dependent on the effectiveness of the control surfaces
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(elevators, ailerons, and rudder) [30]. These surfaces lose effectiveness as altitude and Mach

number increase. Gain scheduling is used in this case to maintain the same loop gain despite

the change in effectiveness. Additionally switching to a default value can be used when sensors

required for scheduling have an unacceptable failure rate. In the event of a failure, reduced

but safe performance is preferred to the loss of the function.

The steps for gain scheduling design are as follows [21]:

1. Compute a model for the plant, then linearize the model about a set of operating points,

expressed in terms of the scheduling variable. These linear models will be used as a basis

for linearization scheduling.

2. Use linear design techniques to find a control law for each of the linear models. This

results in a set of linear controllers with fixed gains for each operating point.

3. Combine the set of controllers into one controller with varying controller gains to cover

the operating points.

4. Evaluate the performance at each operating point as well as at other points within the

operating envelope of the plant.

To illustrate this process, start with a nonlinear plant model [30]:

ẋ = a(x, u, w, v)

z = c1(x, y, w, v)

y = c2(x,w, v)

(2.1)

here x is the state, u is the input, z is the error signal to be controlled, and y is a measured

output available to the control law. The measured output can include, penalized variables,

tracking commands, and some of the states. The variables w and v are exogenous inputs to

the plant, the difference is that w depends on parameters from the plant whereas v is based

on external inputs, such as disturbances, noises, and references. An additional distinction is

that during the design the system will be linerized with respect to v, but not w [30].

From the nonlinear plant model two different approaches can be used to define the liner

models: linear parameter-varying (LPV) model and the quasi-LPV model. In the LPV model,
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the equilibrium point of the system defined in Equation 2.1 is defined as xe, ue, ve, and we

where a(xe, ue, we, ve) = 0 [30]. The set of equilibrium points, S, is defined as xe(σ), ue(σ),

ve(σ), and we(σ) where:

a(xe(σ), ue(σ), we(σ), ve(σ)) = 0, σ ∈ S (2.2)

This set is commonly referred to as an equilibrium family. From this equilibrium family and

error equilibrium family can be defined as:

ze(σ) = c1(xe(σ), ye(σ), we(σ), ve(σ)), σ ∈ S (2.3)

Similarly, the measured output equilibrium family is defined as:

ye(σ) = c2(xe(σ), we(σ), ve(σ)), σ ∈ S (2.4)

One method of defining equilibrium points is from a specific ze(σ) called trim points. An

example of this would be a system that is designed to track a constant reference, r, with zero

steady-state error, then the equilibrium family would satisfy the condition in Equation 2.2 and

Equation 2.3 would also be equal to zero. During the design process the scheduling variable,

σ, is considered a parameter then it is a time-varying input to the final control law. The final

input is defined as σ(t) = g(y(t), w(t)) [30].

The next part of the process is to define the Jacobian linearization of the plant based on

the family of equilibrium points. The plant linearization family can be written in the form [30]:
ẋδ

zδ

yδ

 =


A(σ) B1(σ) B2(σ)

C1(σ) D11(σ) D12(σ)

C2(σ) D21(σ) 0

 , σ ∈ S (2.5)
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where,

A(σ) =
∂a

∂x
(xe(σ), ue(σ), we(σ), ve(σ))

B1(σ) =
∂a

∂v
(xe(σ), ue(σ), we(σ), ve(σ))

B2(σ) =
∂a

∂u
(xe(σ), ue(σ), we(σ), ve(σ))

C1(σ) =
∂c1
∂x

(xe(σ), ue(σ), we(σ), ve(σ))

D11(σ) =
∂c1
∂v

(xe(σ), ue(σ), we(σ), ve(σ))

D12(σ) =
∂c1
∂u

(xe(σ), ue(σ), we(σ), ve(σ))

C2(σ) =
∂c2
∂x

(xe(σ), we(σ), ve(σ))

D21(σ) =
∂c2
∂v

(xe(σ), we(σ), ve(σ))

(2.6)

This completes the derivation of the plant linearization family.

Now, the quasi-LPV method starts by breaking up the plant model in Equation 2.1 into

its linear and nonlinear part [30]:

x(t) =

xa(t)
xb(t)

 (2.7)

The nonlinear part of x(t), xa(t), is combined with the the time-varying scheduling variable:

σ(t) =

xa(t)
w(t)

 (2.8)

From these assumptions the plant model in Equation 2.1 is written in the quasi-LPV form:

ẋa

ẋb

z

y


=



A11(σ) A12(σ) B1a(σ) B2a(σ)

A21(σ) A22(σ) B1b(σ) B2b(σ)

C1a(σ) C1b(σ) D11(σ) D12(σ)

C2a(σ) C2b(σ) D21(σ) D22(σ)





xa

xb

v

û(σ, u)


(2.9)

In this model, the value of σ(t) is unknown a priori, but is measurable in the final system. The

new control input, û is invertible with respect to u, which means:

û−1(σ, û(σ, u)) = u (2.10)
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From the û found in the design with the above system, the actual control can be found using

this equation . In this method the plant does not have to be linearized about a family of

equilibrium points, just the origin. However, this model introduces additional behaviors that

can increase the difficulty of finding the controller.

Each of these methods can be more clearly illustrated with a simple model of a missiles’

longitudinal dynamics. The state model is [30]:

ẋ = MCn(α, δ,M)cos(α) + q

q̇ = M2Cm(α, δ,M)

(2.11)

in this model the states are angle-of-attack, α(t), and pitch-rate, q(t). The parameter M(t)

is an exogenous variable representing Mach number and δ(t) is the tail-fin deflection and the

control input. The parameters Cn and Cm represent the aerodynamic coefficients which are

assumed to be in the form:

Cn(α, δ,M) = cn(α,M) + dnδ

Cm(α, δ,M) = cm(α,M) + dmδ

(2.12)

The output of this system is normal acceleration, η(t), defined as:

η = KM2Cn(α, δ,M) (2.13)

here K is a constant. The usual control problem is to design a control with the objective

of producing a δ(t) command such that η(t) tracks a commanded ηcom(t), that is z(t) =

ηcom(t)−η(t). If α and M are chosen as the scheduling parameters the system can be rewritten

as:

δe =
−cm(α,M)

dm

qe(α,M) = M

[
dncm(α,M)

dm
− cn(α,M)

]
cos(α)

ηe(α,M) = KM2

[
cn(α,M)− dncm(α,M)

dm

] (2.14)
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From this, the corresponding linearization family is:ẋδ
q̇δ

 =

M ∂cn
∂α cos(α)−

[
Mcn − Mdncm

dm

]
sin(α) 1

m2 ∂cm
∂α 0


xδ
qδ

+

Mdncos(α)

M2dm

 δδ
ηdelta =

[
KM2 ∂cn

∂α 0

] xδ

qδ + (KM2dn)δδ


(2.15)

This completes the linearized plant description of this system. From this point a controller

can be designed using the methods discussed later in this section.

Next, for the quasi-LPV method start with the same plant in Equation 2.11. Then perform

a change of variables for q, δ, and η to represent the deviation from an equilibrium point, as

follows [30]:

q̂ = q − qe(α,M)

δ̂ = δ − δe(α,M)

η̂ = η − ηe(α,M)

(2.16)

The state equations become:

α̇ = q̂ +Mdncos(α)δ̂

˙̂q = −∂qe(α,M)

∂α
q̂ +

(
M2dm −Mdncos(α)

∂qe(α,M)

∂α

)
δ̂ − ∂qe(α,M)

∂M
Ṁ

η̂ = KM2dnδ̂

(2.17)

This moves the equilibrium point to the origin. The derivative of Mach number can be used

as a new disturbance input [30]. The quasi-LPV model derived from these equations is:


α̇

˙̂q

η̂

 =


0 1 0 b2a(σ1, σ2)

0 a22(σ2, σ2) b1b(σ2, σ2) b2b(σ2, σ2)

0 0 0 d22(σ2)





α

q̂

Ṁ

δ̂


(2.18)

Now that the plant and its linear models have been defined, the next step is to define

the parameterized linear controller family corresponding to the system in Equation 2.5. The

notation used to describe this controller is [30]:ẋcδ
uδ

 =

F (σ) G(σ)

H(σ) E(σ)


xcδ
yδ

 , σ ∈ S (2.19)
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This leads to a family of controllers for each σ corresponding to the family of equilibrium

points [30]. Normally this set of controllers are interpolated with respect to σ, in a continuous

way. Interpolating between each F (σ) is one to achieve a controller for every possible σ. The

goal of gain programming is to design a linear control family, in the form of Equation 2.19,

with the general form:

ẋc = f(xc, y, w)

u = h(xc, y, w)

(2.20)

Combining Equations 2.1 and 2.20 at one of the equilibrium points leads to a function, xce(σ),

such that:

0 = f(xce(σ), ye(σ), we(σ))

ue(σ) = h(xce(σ), ye(σ), we(σ))

σ ∈ S

(2.21)

This means that the controller satisfies the equilibrium conditions. To relate this outcome

back to the controller in Equation 2.19:

∂f

∂xc
(xce(σ), ye(σ), we(σ)) = F (σ)

∂h

∂y
(xce(σ), ye(σ), we(σ)) = E(σ)

σ ∈ S

(2.22)

Using the equilibrium points, the controller in Equation 2.19 can also be defined in the form:

ẋc = F (σ)[xc − xce(σ)] +G(σ)[y − ye(σ)]

u = H(σ)[xc − xce(σ)] + E(σ)[y − ye(σ)] + ue(σ)

σ ∈ S

(2.23)

As mentioned earlier, the final implementation of the controller sets σ(t) = g(y(t), w(t)),

substituting this into the above equation leads to the final representation of the gain scheduled

controller [30]:

ẋc = F (g(y, w))[xc − xce(g(y, w))] +G(g(y, w))[y − ye(g(y, w))]

u = H(g(y, w))[xc − xce(g(y, w))] + E(g(y, w))[y − ye(g(y, w)) + ue(g(y, w))

(2.24)

Now that these equations are no longer depending on σ when the plant and controller are

linearized together hidden coupling terms may appear in the system. Reference [30] gives
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Theorem 10 to determine if a system has hidden coupling terms, it states “Given the linear

controller family (2.19), there exists a gain scheduled controller (2.24) with no hidden coupling

terms if there exists a controller equilibrium function xce(σ) satisfying

F (σ)
∂xce(σ)

∂σ
+G(σ)

∂ye(σ)

partialσ
= 0

∂ue(σ)

∂σ
−H(σ)

∂xce(σ)

∂σ
− E(σ)

∂ye(σ)

∂σ
= 0

(2.25)

for σ ∈ S”

Starting with the initial nonlinear plant a family of equilibrium points led to a family of

linearized models. From each of these linear models a family of controllers was designed, then

interpolation is used to connect the family of controllers into one smooth, continuous con-

troller. Once this controller is designed simulation and analysis can be performed to check the

performance of the controller at the equilibrium points and at various points in between. The

interpolation technique may need to be adjusted to achieve the desired performance between

the family of controllers. After the simulation and analysis is complete, the gain scheduled

controller design is complete.

2.2 Gain programming control law design

As discussed in 2.1, gain programming is a method used to design non-linear control laws.

The controller used in this research is a basic proportional-derivative control law that uses

two different gain programmers and is designed to track airspeed. One programmer varies

the command based on altitude, because as altitude increases thrust decreases. This decrease

in thrust is shown in Figure 2.1. Adding a gain programmer allows for the command to be

increased as altitude increases. The second gain programmer is programmed with the average

throttle lever angle. At low thrust settings the engine takes longer to respond to thrust settings,

so to help prevent excessive movement, lower gains are used at low throttle angles. Another

compensation that is used in this control law is pitch angle. While tracking altitude, the pitch

angle is not used because the changes in pitch angle are small. However, during other phases

of flight, initial changes in pitch angle should be accounted for when controlling speed, because

the angle of the force of thrust is changing. Once an initial compensation for pitch angle has
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been added, it is washed out, so pitch angle does not create an unnecessary long term bias in

the command. A representation of the autothrottle control law is included in Figure 2.2.

Figure 2.1: Maximum thrust (lbs) of one engine at each altitude

Several changes were made to this control law to reduce throttle activity and fuel con-

sumption. The first change was to reduce the gains of the proportional and derivative paths of

the control law. The second was to remove the fine control parameter that is sent directly to



www.manaraa.com

26

the engine, staying with the original gains and the lower gains. By removing the fine control

parameter, the amount of dead zone is increased before a change of thrust is commanded.
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2.3 Optimal control laws

Another control theory that was used in this research was optimal control. The design

of an optimal control is “to determine the control signals that will cause a process to satisfy

the physical constraints and at the same time minimize (or maximize) some performance

criterion” [22]. This section will define the generic continuous time optimal control problem.

To start, define the plant as [24]:

ẋ(t) = f(x, u, t) (2.26)

with the state x(t) ∈ <n and the control input u(t) ∈ <m. The performance index of the

system (the term to be maximized or minimized) is defined as [24]:

J(t0) = φ(x(T ), T ) +

∫ T

t0

L(x(t), U(t), t)dt (2.27)

the time interval considered in this problem is [t0, T ] [24]. In Equation 2.27 the term φ(x(T ), T )

is the final weight term and only depends on the final state and time and the integral repre-

sents a weighting function that depends on all of the intermediate states on [t0, T ]. Next the

Hamiltonian function is derived to combine the constraints of the system to the performance

index [24]:

H(x, u, t) = L(x, u, t) + λT f(x, u, t) (2.28)

. The necessary conditions to minimize Equation 2.27 for this system are derived from the

Hamiltonian:

ẋ =
∂H

∂λ
= f

−λ̇ =
∂H

∂x
=
∂fT

∂x
λ+

∂L

∂x

0 =
∂H

∂u
=
∂L

∂u
+
∂fT

∂u
λ

(2.29)

The first of these equations corresponds to the state equation defined in 2.26, second equation

is the costate equation, and the third is the stationarity condition [24]. To find the singular

arc there are additional necessary conditions of the stationarity condition and its derivatives

to also be zero [27]. This additional necessary condition is known as the Kelley condition [27].

Another way to compute the singular arc for two states is by using Green’s theorem [27]. The
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state equations are:

ẋ = fx(x, y) + gx(x, y)u

ẏ = fy(x, y) + gy(x, y)u

(2.30)

and the cost function is [27]:

J =

∫ tf

t
f0(x, y)dt (2.31)

To solve for the singular arc, start by elimination the control in Equations 2.30 and substituting

the result into Equation 2.31. Then solve for the minimum of the resulting integral, the

associated curve from this integral is:

∂A

∂y
− ∂B

∂x
= 0 (2.32)

where A and B are:

A =
f0gy

fxgy − fygx

B =
f0gx

fygx − fxfy

(2.33)

Solving Equation 2.32 is the same as solving the necessary equations (Equation 2.29) and the

Kelley condition [27].

2.4 Optimal control law design

To maximize range, [27] derived a singular optimal controller. With the equations of motion

defined in Section 1.3.1, the following equations define the optimal control problem from [27].

The cost function is [27]:

J = −
∫ t

0
Udt (2.34)

The Hamiltonian and Euler-Lagrange equations are [27]:

H = −U + λU

(
δTM
m
− AU2

m
− Bmg2

U2

)
− λmcT δTM

λ̇U = 1 + λU

(
δTM
m
− 2AU

m
− 2Bmg2

U3

)
+

(
dC

dU
δTM + cT δ

dTM
dU

)
˙λm = λU

(
δTM
m2
− AU2

m2
− Bg2

U2

) (2.35)
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On the singular arc these equations are [27]:

H̄ = −U + λU

(
−AU

2

m
− Bmg2

U2

)
= 0

S =
λU
m
− λmcT

Ṡ = 1 + λU

(
2AU

m
− 2Bmg2

U3
+
cTAU

2

m
− cTBmg

2

U2

)
+ λm

dC

dU

(
AU2 +

Bm2g2

U2

)
= 0

(2.36)

Solving these equations for mass, gives the singular arc [27]:

m =
U2

g

√√√√√A
(

1 + UcT + U
cT

dC
dU

)
B
(

3 + UcT − U
cT

dC
dU

) (2.37)

The term UcT can be assumed to be small compared to the rest of the terms, and with

both sides of the equation multiplied by the acceleration due to gravity, the solution becomes

an equation for weight as a function of airspeed [27]:

W = U2

√
A[1 + (U/cT )(dcT /dU)]

B[3− (U/cT )(dcT /dU)]
(2.38)

To determine the thrust required to follow the arc, the equation for S̈ = 0 must be formed

[27]. This equation becomes difficult to manage algebraically. This equation can be solved if a

couple of assumptions are made, i.e. the term cTU is small, and cT is independent of U . Then

the thrust on the arc is [27]:

FTx =
4

3
AU2 (2.39)

2.5 Proposed methods to calculate reference input

As proposed in the first hypothesis there may be an optimum speed to fly an aircraft to

reduce fuel, this section will derive each of these methods that have been proposed in literature.

In section 1.3.1.2 equations are defined for the range of an aircraft. Much research has been

done to find a particular speed to maximize the range equations. These methods include finding

the speed corresponding to the maximum point of the range equation by assuming some terms

do not depend on speed, and an average Mach number based on the Breguet equation. Another

method proposed is an optimal controller to maximize the range of the aircraft.
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2.5.1 Maximum lift-to-drag

For level flight lift L is equal to weight. Lift can be expressed in terms of the lift coefficient

CL [26]:

W = L = CL

(
1

2
ρU2

)
S or CL =

W(
1
2ρU

2
)
S

(2.40)

Here, the parenthetical term represents dynamic pressure, including atmospheric density for

the flight altitude, ρ and S represents the wing area. To determine the drag coefficient CD,

the lift coefficient is substituted into the drag polar equation:

CD = CD0 +KC2
L = CD0 +K

[
W(

1
2ρU

2
)
S

]2
(2.41)

where K is the induced drag factor. Equations 2.40 and 2.41 can be divided to calculate the

lift-to-drag ratio [26]:

L

D
=
CL
CD

=
W

CD0

(
1
2ρU

2
)
S +K W 2

( 1
2
ρU2)S

(2.42)

The maximum lift-to-drag ratio is given by:(
L

D

)
max

=

√
1

4CD0K
(2.43)

2.5.2 Mach number for minimum thrust

In steady level flight, the required thrust is equal to the total drag, therefore the minimum

thrust required is the same as the minimum drag. [26] Minimizing the drag equation and

solving for speed, the result is a speed corresponding to the minimum thrust required for level

flight [26]:

UminThrust =

[
2

ρ

√
K

CD0

W

S

]1/2
(2.44)

2.5.3 Mach number for maximum velocity times lift-to-drag

To maximize the range, U(L/D)/cT should be a maximum if initial and final weights are

specified. If cT is assumed to be constant with respect to velocity, then the range will be
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maximized when U(L/D) is maximized. The term U(L/D) can be defined as follows [26]:

U
L

D
= V

W

CD
(
1
2ρU

2
)
S

=
W

CD
(
1
2ρU

)
S

=

√
W

CD

√(
1
2ρU

2
)
S

 √
W√(
1
2ρ
)
S


=
C

1/2
L

CD

 √
W√(
1
2ρ
)
S


(2.45)

In Equation 2.45, the term in brackets is fixed value for a given weight and flight altitude.

Therefore by maximizing C
1/2
L /CD, the value of U(L/D) will also be maximized, this speed is

defined in [26]:

U = 1.316UminThrust (2.46)

2.5.4 Mach number for maximum velocity times lift-to-drag divided by TSFC

For a constant altitude, cT , L/D, and U , are not the same as weight changes [9]. If cT , L/D,

and U are assumed to vary with speed, maximize range for a set of initial and final weights,

by maximizing U(L/D)/cT [26]. The speed for maximum U(L/D)/cT does not necessarily

correspond to the same speed calculated in Equation 2.46 [26]. The equation to be maximized

in this case is:

R = U

W
CD( 1

2
ρV 2)S

cT0M
β

(2.47)

At a specific weight and altitude, Equation2.47 can be solved for a speed to produce the

maximum range.

2.5.5 Average Mach number to maximize range

From Equation 1.12 an approximate average Mach number can be derived [12]:

µ̄2 =
µ20 + µ21

2
=

2− ζ
2(1 + β)

[
−(1− β)k2EM0 +

√
(1− β)k22E

2
M0

+ (1 + β)(3− β)
]

(2.48)

If the wing has no camber, Equation 2.48 can be simplified to [12]:

µ̄2 =
2− ζ

2(1 + β)

[√
(1 + β)(3− β)

]
(2.49)
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This specifies an average Mach number over the range of cruise weights to maximize range [12].

Two types of control law design have been presented: gain scheduling and optimal. The

design of each of these controllers for this system have been described. Lastly each method for

calculating an optimal speed reference has been derived.
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CHAPTER 3. METHODS AND PROCEDURES

This chapter describes the methods and procedures used to complete this research. First

the regional jet airplane model and the autothrottle control law design are described. Then the

procedures used to run each simulation. After that the implementation of each of the methods

described in Chapter 2 in simulation. The final area discussed is the disturbances that were

added to the model to understand the performance in non-ideal conditions.

3.1 Model used

The airplane simulation is a six degree of freedom model of a regional jet implemented

in Simulink. A screen shot of this model is shown in Figure 3.1. This jet is designed to

transport about 50 passengers. It has two engines mounted at the rear of the fuselage. The

throttle quadrant model includes to independent servos two back drive the throttle. The

resulting throttle position from this model is the input to the engine. The simulation includes

atmospheric parameters such as wind, temperature, and pressure. Models of sensors and other

avionics have been added as interfaces to the autothrottle.

The Simulink model, shown in Figure 3.1, is broken into blocks that represent different

functional areas of the aircraft. The throttle quadrant block is a model of the throttle quad-

rant assembly, including the servos that drive the throttles. The command calculated by the

autothrottle is sent to these servos. The Aircraft block contains the models of the atmosphere,

engines, aerodynamics, and weight of the airplane. The atmosphere block contains models of

wind, atmospheric temperature, atmospheric pressure, and the speed of sound. The engine

simulation takes the throttle position from the throttle quadrant model, fine trim commands

from the autothrottle model and the atmosphere model to calculate the thrust produced. The

aerodynamics model includes calculations of the aerodynamic forces (both lift and drag) on



www.manaraa.com

35

the airplane, including the wings, tail, and movable surfaces. Two of the outputs of this model

are the coefficients of lift and drag. The last model of this block is the weight model, repre-

senting the weight of the aircraft based on the weight entered, fuel used, location of the center

of gravity, and attitude of the aircraft. All of the forces calculated inside of the aircraft are

combined to calculate the total forces and moments of the aircraft. The sensors block contains

models of the air data computer, inertial reference unit (measures attitude data), navigation

data, and radio data. Simulations of panels, displays, and other avionics in the cockpit are

included in the Avionics block. The simulation of the panels in the cockpit allow the simulation

to set the same parameters as the crew, such as altitude and airspeed targets. The displays

and other avionics system components also provide data that is required for simulation of

the AFCS, such as flight plan information from the Flight Management System (FMS). The

AFCS block contains models of the autothrottle and flight guidance computers used in the

simulation. For this simulation, the autothrottle is setup to track a reference airspeed and the

flight guidance is set to hold altitude and heading. The data recording block records the data

from the simulation to be analyzed and plotted after the simulations are complete. The last

block, SimControl, controls the initialization of the aircraft and other parameters needed in

the simulation, such as wind speed and direction.
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3.2 Simulation procedures

Each of the methods described in 2.5 were simulated at 5 different altitudes lying within

the normal range of altitudes for cruise flight: 20,000, 25,000, 30,000, 35,000, and 40,000 feet.

As a baseline case, a simulation was initialized at Mach 0.78, the normal cruise speed of the

regional jet simulation, and the airspeed control law described in Section 2.2 was used to track

that speed for the duration of the cruise phase of flight. Each of the simulation variations

proposed in this chapter were run for an equivalent of three hours of real time flight. These

procedures are included in Appendix C.

3.3 Implementation of proposed references

The implementation of the proposed methods includes the determination of the constants

and values for TSFC that are used in all of the methods proposed in literature. Additionally,

for each method the calculation of initial values and the set up of the simulation are described.

3.3.1 Determination of constants

Before determining the numerical values of the equations in Chapter 2, several constant

values were defined. The first group of constants is based on Earth’s parameters on a stan-

dard day. For the troposphere, at altitudes less than 36,152 feet, the temperature (degrees

Ferenheight), and atmospheric pressure (pounds per square feet) are defined as [1]:

Temp = 590.00356h

p = 2116

[
Temp+ 459.7

518.6

]5.256 (3.1)

where h is the altitude in feet. For the lower stratosphere, including altitudes between 36,152

and 82,345 feet, the temperature and atmospheric pressure are defined as [1]:

Temp = −70

p = 473.1e1.73−0.000048h
(3.2)
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Based on the temperature and pressure found in 3.1 or 3.2 the atmospheric density, ρ, in slugs

per cubic feet can be derived by [1]:

ρ =
p

1718(Temp+ 459.7)
(3.3)

The specific heat ratio, γ, of air on a standard day is estimated as 1.4 in [2]. From [3], the

speed of sound, a, in feed per second is determined using the equation:

a =
√
γRTemp ∗ 3.28 (3.4)

where R is the gas constant (286 m2/s2/K) and Temp is the temperature in Kelvin. The

acceleration due to gravity is defined as 32.174 feet per second squared.

The next group of constants is based on assumptions of the aircraft design. The values of

these constants for the regional jet model used are defined in Table 3.1 below.

Table 3.1: Aircraft constant parameters

Variable Description Value Units

b Wing span 76.25 Feet

S Wing area 760 Square Feet

AR Aspect Ratio, b2/S 7.65

e Oswald span efficiency factor 0.85

K Induced drag factor, 1/(πeAR) 0.055478

TM Maximum Thrust 12,670 Pounds

W0 Weight at the start of cruise flight 72,300 Pounds

Wf Weight at the end of cruise flight 63,100 Pounds

CD0 Coefficient of drag at zero-lift, 11.5/S 0.0125

3.3.2 Calculation of TSFC

As explained in Section 1.3.1.3, Equation 1.15 can be used to determine the TSFC for jet

engines. The values of cT0 and β in the TSFC equation were empirically found using the jet
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engine model of the simulation. First TSFC was calculated at different throttle positions at the

speed for maximum lift-to-drag ratio. From this data, the throttle position corresponding to

the thrust required the maximum lift-to-drag ratio. The TSFC over a range of Mach numbers

was calculated at this thrust level. From this set of Mach numbers and calculated TSFC a

best fit line was derived. While an equation in the for of Equation 1.15 was a good fit for the

data, the author found that the following equation was a better fit for the data:

cT = cTαe
αM (3.5)

The data at 35,000 feet is shown in Figures 3.2 and 3.3 to show an example of the difference.

Figure 3.2 shows the data and best fit line from Equation 1.15 and Figure 3.3 shows the same

data and best fit line from Equation 3.5.

Figure 3.2: TSFC data at 35,000 feet with best fit line in the form of Equation 1.15
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Figure 3.3: TSFC data at 35,000 feet with best fit line in the form of Equation 3.5

3.3.3 Maximum lift-to-drag

In section 2.5.1 the maximum lift-to-drag ratio is defined in Equation 2.43. Using the

constants in Table 3.1 the value can be calculated. The speed at which the maximum lift-

to-drag ratio is attained was also determined and is shown in Table 3.2. During level flight

the thrust required is equal to the drag and the lift is equal to the weight. Therefore the

thrust required to achieve the maximum lift-to-drag ratio is the weight divided by the value

of maximum lift-to-drag. The value of thrust required at the start of cruise flight is 3807.89

pounds. To implement this scenario in the simulation, the same throttle position determined

during the TSFC calculations was set as the constant throttle position for the duration of the

cruise phase of flight. Since the amount of thrust needed changes with the weight, a second

test case was included to reposition the throttles halfway through the flight to the new value
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of thrust required. In both scenarios the simulation was initialized to a Mach number equal to

the speed corresponding to a maximum lift-to-drag ratio.

Table 3.2: Numerical values for speed at the maximum lift-to-drag ratio

Altitude (Feet) Speed (Feet/Second) Mach Number

20,000 519.5096 0.501

25,000 566.3766 0.557

30,000 619.7324 0.623

35,000 680.8174 0.700

40,000 765.2544 0.790

3.3.4 Mach number for minimum thrust

In section 2.5.2 the equation for speed at the minimum thrust is shown in Equation 2.44.

This equation was used to determine the speed for each altitude, shown in Table 3.3. The

values in Tables 3.2 and 3.3 are the same, although they were arrived at through different

methods. The values in Table 3.2 were determined from the speed vs. lift-to-drag ratio curve,

by finding the speed corresponding to the point of maximum lift-to-drag ratio. The values

in Table 3.3 were calculated from Equation 2.44 which was determined symbolically from the

lift-to-drag equation in [26]. The simulation was initialized to this speed and a model of an

industry autothrottle was used to hold the speed throughout the duration of the cruise flight.

Since the parameters required to calculate this speed in real time are available to the avionics

system, a simulation where the speed was constantly calculated (as weight changes) was also

run and sent to the autothrottle as the speed reference. A screen shot of how this is modeled in

Simulink is provided in Figure 3.4. The top path in this figure is the same as in Equation 2.44.

The first part of the calculation is 2/ρ. The result is multiplied by a constant that is equal

to
√
K/CD0 . The weight, which is constantly changing, is divided by a constant S and the

result is multiplied by the previous result. After that the ‘sqrt’ block is used to calculate the

square root of the result. This equation produces a speed in knots, and the last programmer is



www.manaraa.com

42

used to convert the speed into a Mach number. A programmer is used for this since, the speed

of sound changes with altitude. The other two programmers in the drawing will be explained

as they are used. The switches, which pass the top input if the middle input is greater than

0.5, are used to select the desired type of Mach reference. To use this reference the parameter

‘asRefMinThrustReq’, is set to one and ‘asRefMax’ is set to zero.

Table 3.3: Numerical values for UminThrust

Altitude (Feet) Speed (Feet/Second) Mach Number

20,000 519.5096 0.501

25,000 566.3766 0.557

30,000 619.7324 0.623

35,000 680.8174 0.700

40,000 765.2544 0.790
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3.3.5 Mach number for maximum velocity times lift-to-drag

As described in section 2.5.3 the speed corresponding to the maximum U(L/D) is defined

by Equation 2.46. The numerical values for this speed are shown in Table 3.4. The simulation

was initialized to this speed and a model of an industry autothrottle was used to hold the speed

throughout the duration of the cruise flight. At 35,000 and 40,000 feet the speed for maximum

U(L/D) is greater than the maximum operating Mach number (0.85) of the airplane.

Table 3.4: Numerical values for the speed corresponding to maximum U(L/D)

Altitude (Feet) Speed (Feet/Second) Mach Number

20,000 683.6746 0.659

25,000 745.3516 0.734

30,000 815.5679 0.820

35,000 895.9557 0.921

40,000 1007.0748 1.040

3.3.6 Mach number for maximum velocity times lift-to-drag divided by TSFC

Section 2.5.4 demonstrated maximizing the equation for U(L/D)/cT was derived. The

result is is an equation for range, Equation 2.47. Using mathematical equation software, the

maximum of Equation 2.47 was calculated numerically for the weights at the start and end of

the cruise phase of flight. The speed corresponding to this value was also calculated. These

speeds are shown in Tables 3.5 and 3.6. The average speeds over the weight range were also

calculated, and the numerical values are shown in Table 3.7. Two implementations of this

speed were considered in simulation. This first implementation is similar to the other constant

speeds described, in which the simulation was initialized to the Mach number in Table 3.7 and

the industry autothrottle was set to hold that speed for the duration of cruise flight. The other

implementation was include a 2-dimensional look-up table, with weight as the input and the

desired Mach number for that weight as the output. Two points were used in the table, with a

linear interpolation in-between values. The first point is the ending weight for cruise, and the
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corresponding speed from Table 3.6 and the second point is the starting weight for cruise and

the corresponding speed from Table 3.5. This look-up table is the second path shown in Figure

3.4. To use this reference the parameter ‘asRefMinThrustReq’ is set to zero and parameter

‘asRefMax’ is set to one.

Table 3.5: Numerical values for the speed corresponding to maximum U(L/D)/cT at the weight

for the start of cruise

Altitude (Feet) Speed (Feet/Second) Mach Number

20,000 556.4709 0.537

25,000 607.5852 0.598

30,000 665.8245 0.669

35,000 733.8104 0.754

40,000 824.8197 0.852

Table 3.6: Numerical values for the speed corresponding to maximum U(L/D)/cT at the weight

for the end of cruise

Altitude (Feet) Speed (Feet/Second) Mach Number

20,000 519.9361 0.501

25,000 567.6945 0.559

30,000 622.1100 0.625

35,000 685.6324 0.705

40,000 770.6666 0.796
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Table 3.7: Numerical values for the average speed corresponding to maximum U(L/D)/cT over

the weight range for cruise

Altitude (Feet) Speed (Feet/Second) Mach Number

20,000 538.2035 0.519

25,000 587.6399 0.578

30,000 643.9672 0.647

35,000 709.7214 0.729

40,000 797.7432 0.824

3.3.7 Average Mach number to maximize range

In section 2.5.5 another method for calculating the average Mach number to maximize range

is proposed. The average Mach numbers for each altitude were calculated from Equation 2.49,

producing the values shown in Table 3.8. As in the previous scenarios, the simulation was

initialized to the speed in table 3.8, and the industry autothrottle set to hold that speed. Even

though the values for average Mach number in Tables 3.7 and 3.8 were determined differently,

they are very close, and for most altitudes the difference occurs in the fourth or fifth decimal

place.

Table 3.8: Numerical values for the average speed corresponding to maximum range

Altitude (Feet) Mach Number

20,000 0.519

25,000 0.578

30,000 0.647

35,000 0.729

40,000 0.824
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3.3.8 Optimal control with a singular arc

In Section 2.4, a singular arc was derived using optimal control theory to show the rela-

tionship of weight vs. speed to maximize the range. This arc is defined in Equation 2.38.

Since the calculations in [27] are in SI units, dimensional analysis was performed on Equation

2.38 to verify the units. Using Equation 3.5 for TSFC, the numerical values for the arc were

determined across the cruise weight range. The numerical values for the start and end cruise

weights are shown in Tables 3.9 and 3.10 respectively. There are two implementations of the

speed on the singular arc in the simulation. The first initializes and holds the average Mach

number from the arc, similarly to the other methods described above. The second implementa-

tion included a 2-dimensional lookup table with the points of the singular arc across the weight

range. A function in Matlab was created to generate the arrays for the programmer at each

altitude, and this code can be found Appendix C. The look-up table is the third path shown

in Figure 3.4. To use this reference the parameters ‘asRefMinThrustReq’ and ‘asRefMax’ are

both set to zero. A third look-up table was used because 21 break points were used to define

the singular arc at each altitude, whereas only two points were used in the other table. With

this different number of break points, the simulation would have needed to recode and compile

each time the number of break points was changed, so separating the look-up tables saved

simulation time.

Table 3.9: Numerical values for the speed on the singular arc at the weight for the start of

cruise

Altitude (Feet) Speed (Feet/Second) Mach Number

20,000 556.4709 0.537

25,000 607.5852 0.598

30,000 665.8245 0.669

35,000 733.8104 0.754

40,000 824.8197 0.852
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Table 3.10: Numerical values for the speed on the singular arc at the weight for the end of

cruise

Altitude (Feet) Speed (Feet/Second) Mach Number

20,000 519.9361 0.501

25,000 567.6945 0.559

30,000 622.1100 0.625

35,000 685.6324 0.705

40,000 770.6666 0.796

Table 3.11: Numerical values for the average speed on the singular arc

Altitude (Feet) Speed (Feet/Second) Mach Number

20,000 599.9503 0.579

25,000 649.9992 0.640

30,000 700.0408 0.704

35,000 749.9682 0.771

40,000 800.0378 0.826
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Figure 3.5: Singular arc at 20,000 feet based on Equation 2.38

Figure 3.6: Singular arc at 25,000 feet based on Equation 2.38
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Figure 3.7: Singular arc at 30,000 feet based on Equation 2.38

Figure 3.8: Singular arc at 35,000 feet based on Equation 2.38
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Figure 3.9: Singular arc at 40,000 feet based on Equation 2.38

To implement the thrust on the arc, the control δ was calculated based on the equation

for FTx in Equation 1.4. This means that δ is derived by dividing Equation 2.39 by TM . The

simulation was initialized to the speed in Table 3.9 and the throttles were positioned based on

the continuously-calculated value of δ throughout the duration of the simulation.

3.4 Disturbances added

The initial simulations were run at the speed calculated in steady winds, this is the ideal

situation. To understand the impact of non-ideal equations several cases were added with

winds. Additionally to understand the sensitivity of each Mach number simulations were run

at various small differences away from the ideal value. Initially the simulation was run with a

practical implementation including rounding of the reference airspeed to the nearest hundredth,

since each of the methods proposed have more significant digits, additional simulations were

run with more precision.
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3.4.1 Winds

While still air is ideal, it rare to find, so three different types of winds were considered to

understand the impact of non-ideal conditions. The first type of winds added was turbulence

in all directions at 6 feet per second RMS. Turbulence is modeled as white noise, added to

the airspeed signal used by the autothrottle. Next 30-knot bursts of head and tail winds were

included in separate cases.

Figure 3.10 illustrates the impact of winds on the control law. This plot was generated

from data recorded in a 20,000 ft test case. The first subplot shows the magnitude of the wind

speed in turbulence. The magnitude is calculated from the longitudinal and lateral winds. The

second subplot shows the actual Mach number in the solid line and the complemented Mach

number in the dashed line. As mentioned in [8], airspeed is complemented with longitudinal

airspeed to remove some of the unneeded high-frequency content. The ground speed of the

aircraft is the sum of the airspeed and the wind speed (tail wind is positive wind speed). This

means a tail wind increases the ground speed and a head wind decreases the ground speed.

Because the destination of the aircraft is on the ground, range is usually calculated by the

distance traveled relative to the ground. Therefore headwinds are detrimental to the range of

the aircraft.

3.4.2 Variation of Mach number

In order to look at the sensitivity to a change in Mach number a second series of simulations

were run on the average Mach numbers calculated in Tables 3.7, 3.8, and 3.11. For each of

these Mach numbers, a simulation was run at a various small differences in Mach number, from

-0.2 to 0.1 Mach. Each of these results were compared to the original speed.

3.4.3 Airspeed reference rounding

Human factors should always be taken into consideration when designing a system. In

this case, because both the Mach number and the airspeed reference (in Mach number) are

displayed to the crew to the nearest hundredth, the Mach number reference in the autothrottle

is also rounded to the nearest hundredth. To allow the crew to verify that the autothrottle
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Figure 3.10: Plot of wind speed and airspeed at 20,000 feet in turbulence

is performing correctly, the reference input used by the autothrottle is the same value that is

displayed in the cockpit. The data shown in this chapter was calculated using this rounding.

However, both the airspeed-based cases in the original simulation and the delta simulations

were run with rounding to the thousandth as well.

The model of the regional jet aircraft and the procedures to run this model have been

reviewed. Additionally the implementation of each method and the disturbances added to the

simulation have been discussed. This provides a foundation for the results that were found

during this research.
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CHAPTER 4. RESULTS

After each method was simulated at each altitude, they were compared using the average

number of nautical miles, nmi, flown per pound of fuel. To understand the sensitivity to

each Mach number that was calculated, another series of simulations was run at varying small

deviations from the calculated Mach number. From this run of simulations it was determined

that some of the original constants were not accurate, so they were adjusted and all simulations

were repeated. The constants and Mach numbers provided in Chapter 3 are the final values.

The data provided in this chapter were collected using those values as well. These new constants

were verified by comparing the calculated lift and drag coefficients to the values produced by

the simulation.

A summary of the data is shown in Table 4.1 and graphs in Figures 4.1 - 4.5. From this

comparison, the average Mach number for Equation 2.44 and Equation 2.49 over the weight

range, as well as Equation 2.44 and Equation 2.38 constantly updated as weight changes were

in the top six for best fuel consumption for all altitudes. The average of Equation 2.47 and

Equation 2.47 constantly updated as weight changes were both also in the top six for four of

the altitudes. At altitudes less than 40,000 feet, compared to a normal cruising speed of Mach

0.78, each of the discussed methods use less fuel. At all altitudes, when the airspeed control

law was used to track the airspeed on the singular arc (Equation 2.38) the fuel consumption

was better than when the thrust for the arc (Equation 2.39) was used. The thrust method for

the arc did not end up in the top six at any altitude, this could indicate that the simplifications

proposed in [27] were not accurate for this aircraft. Figure 4.6 compares the best method at

each altitude and shows that there is not only an optimum speed to fly for a given altitude,

there is also an optimum altitude to fly.

The introduction of winds impacted the data as expected. The graphs in Figures 4.7 -
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4.11 show the difference between the cases with and without winds. Due to the change in

ground speed, with head winds the fuel consumption was worse, and with tail winds the fuel

consumption was improved. When turbulence was added, the results were about the same.

The numerical data for the cases with winds is included in Appendix B.

The simulation did not show show a significant difference in the fuel consumption when the

reference was rounded to the nearest thousandth instead of the nearest hundredth. In Table

4.2, the data with each rounding value is provided for 30,000 feet. All of the data from this

simulation is also provided in Appendix B.

Several combinations of changes were made to the autothrottle control law used in these

simulations to reduce throttle activity. These changes included reducing the gain and removing

the trim parameter that is sent directly to the engine. By, removing the trim parameter, the

amount of dead zone is increased before a change of thrust is commanded. None of these

changes resulted in a significant improvement to the initial results, in steady air or with winds,

at several Mach numbers between 0.5 and 0.85.
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Table 4.1: Fuel used (nmi/lb) for each method at each altitude

Altitude (Ft)

Equation 20,000 25,000 30,000 35,000 40,000

Equation 2.44 0.1744 0.1927 0.2103 0.2286 0.2491

Equation 2.44 constantly updated 0.1744 0.1931 0.2108 0.2283 0.2480

Constant thrust 0.1459 0.1588 0.1673 0.1721 0.1797

Two levels of thrust 0.1536 0.1678 0.1798 0.1844 0.1912

Equation 2.46 0.1575 0.1723 0.1792 0.1843 0.1733

Equation 2.47 average 0.1739 0.1918 0.2096 0.2277 0.1943

Equation 2.47 constantly updated 0.1740 0.1928 0.2095 0.2308 0.2145

Equation 2.49 0.1734 0.1923 0.2093 0.2298 0.2315

Equation 2.38 average 0.1699 0.1862 0.2044 0.2259 0.2186

Equation 2.38 constantly updated 0.1738 0.1921 0.2101 0.2289 0.2504

Equation 2.39 0.1729 0.1908 0.2077 0.2265 0.1959

Cruise Mach 0.1386 0.1636 0.1934 0.2258 0.2497

Table 4.2: Fuel used (nmi/lb) for each rounding method at 30,000 feet

Equation 0.01 Rounding 0.001 Rounding

Equation 2.44 0.2103 0.2110

Equation 2.44 constantly updated 0.2108 0.2107

Equation 2.46 0.1792 0.1798

Equation 2.47 average 0.2096 0.2093

Equation 2.47 constantly updated 0.2095 0.2094

Equation 2.49 0.2093 0.2098

Equation 2.38 average 0.2044 0.2040

Equation 2.38 constantly updated 0.2101 0.2106

Cruise Mach 0.1934 0.1934
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CHAPTER 5. DISCUSSION AND SUMMARY

Several conclusions can be drawn from the results presented in Chapter 4. The first result

is that there is at least one speed at every altitude that performed better than the standard

cruise speed of Mach 0.78. While minimal throttle activity is preferred, the results show

that some movement is necessary. The disturbances impacted the results as expected. The

proposed method to be used on this aircraft. There were also limitations to this method that

are described. Additionally the practical implementation and future work associated with this

research are discussed.

5.1 Discussion

At each altitude there is at least one speed that is more efficient than the standard cruise

Mach number. Table 5.1 shows the rank of the top six most efficient methods at each altitude

when the reference was rounded to the nearest hundredth. In Table 5.2, the reference was

rounded to the nearest thousandth. The top six were selected because, for all altitudes except

40,000 feet, these same six of the twelve total methods all appeared in various orders.
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Table 5.1: Rank of top six methods at each altitude with the Mach number rounded to the
nearest hundredth

Rank 20,000 Ft 25,000 Ft 30,000 Ft 35,000 Ft 40,000 Ft

1 Eq. 2.44
constantly
updated

Eq. 2.44
constantly
updated

Eq. 2.44
constantly
updated

Eq. 2.47
constantly
updated

Eq. 2.38
constantly
updated

2 Eq. 2.44 Eq. 2.47
constantly
updated

Eq. 2.44 Eq. 2.49 Cruise Mach
number

3 Eq. 2.47
constantly
updated

Eq. 2.44 Eq. 2.38
constantly
updated

Eq. 2.38
constantly
updated

Eq. 2.44

4 Eq. 2.47 Eq. 2.49 Eq. 2.47 Eq. 2.44 Eq. 2.44
constantly
updated

5 Eq. 2.38
constantly
updated

Eq. 2.38
constantly
updated

Eq. 2.47
constantly
updated

Eq. 2.44
constantly
updated

Eq. 2.49

6 Eq. 2.49 Eq. 2.47 Eq. 2.49 Eq. 2.47 Eq. 2.38
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Table 5.2: Rank of top six methods at each altitude with the Mach number rounded to the
nearest thousandth

Rank 20,000 Ft 25,000 Ft 30,000 Ft 35,000 Ft 40,000 Ft

1 Eq. 2.49 Eq. 2.44 Eq. 2.44 Eq. 2.47
constantly
updated

Eq. 2.38
constantly
updated

2 Eq. 2.44
constantly
updated

Eq. 2.49 Eq. 2.44
constantly
updated

Eq. 2.49 Cruise Mach
number

3 Eq. 2.38
constantly
updated

Eq. 2.44
constantly
updated

Eq. 2.38
constantly
updated

Eq. 2.38
constantly
updated

Eq. 2.44

4 Eq. 2.47
constantly
updated

Eq. 2.47
constantly
updated

Eq. 2.49 Eq. 2.44 Eq. 2.44
constantly
updated

5 Eq. 2.47 Eq. 2.47 Eq. 2.47
constantly
updated

Eq. 2.44
constantly
updated

Eq. 2.49

6 Eq. 2.44 Eq. 2.38
constantly
updated

Eq. 2.47 Eq. 2.47 Eq. 2.38

At 20,000 feet, the lowest altitude studied, the results from the top six methods were all

within the margin of error for the simulation, and Equation 2.39 (rank 7) was also within the

margin of error. Each of these methods were better than the Mach 0.78 cruising speed, which

was the worst method for this altitude and the second worst method was constant thrust.

The results were very similar at altitudes between 25,000 and 35,000 feet, the worst case was

constant thrust. The results of the best results showed that the top 7, 6, and 5 methods were

within the margin of error for 25,000 feet, 30,000 feet, and 35,000 feet, respectively. However,

at 35,000 feet, the sixth position was only 0.00303 nmi/lb lower than best method.

At 40,000 feet, only four of the top six methods remained within the margin of error of the

simulation. In this case the difference between position five and one was 0.01895 nmi/lb and
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the difference between six and one was 0.03186 nmi/lb, this translate to about 116 and 208

extra miles, respectively, that could have been flown during the same duration if best case was

flown instead. The worst case for this altitude was Equation 2.46 and the second worst case

was constant thrust. This altitude yielded a different set methods for the top six; the cruise

Mach number and the average of Equation 2.38 were not in the top six for any other altitude.

The cruise Mach number is probably in the top six in this case because it was within 0.15 Mach

of the other speeds derived. Since the best case for this altitude was when Equation 2.38 was

constantly updated, it is not entirely surprising that the average also performed pretty well.

As this altitude is within about 1,000 feet of the service ceiling of the aircraft, the results may

not be representative of the rest of the flight envelope.

For all altitudes there was no other method within the margin of error of the worst case.

For altitudes between 25,000 feet and 35,000 feet, constant throttle was the worst case and it

was the second worst case for the other two altitudes. This is expected because in the course

of a three hour flight, over 5,000 lbs of fuel is consumed. As discussed in Section 3.3.3, the

thrust required is directly dependent on the weight of the aircraft, so as fuel is burned and

weight decreases the thrust required is also decreasing. This means that the throttle position

set at the beginning of the flight is no longer appropriate.

As described in [8], minimal throttle activity is a desired design criterion for an autothrottle.

However, this research shows that at least some throttle activity is needed to maintain a given

speed, because the constant-thrust and dual-thrust methods were not in the top six at any

altitude. The be same result would likely be seen on many airframes other than the one studied

in this research.

Each of the original authors tested his proposed solution on different airframes, one a

business jet [26], one an air transport sized jet [27] and one a generic transport sized aircraft [12]

which is probably bigger than the aircraft considered here. In [26] the best method was

achieved using the Mach number calculated with Equation 2.47. However, this data shows

that, when comparing the methods from [26], at all altitudes except 35,000 feet, Equation 2.44

is more efficient than Equation 2.47. At all altitudes the difference between the best performing

methods proposed in [26] were within the error of the simulation.
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Since most of these methods were within the margin of error for this research, it is hard

to pick one particular method that is the best. For a regional jet the normal cruise altitude

range (20,000 - 30,000 feet), in this range the best method is Equation 2.44. The constant

value from Equation 2.44 was also close to the top for each of these altitudes and would be a

good alternative if the desired speed is to remain constant. While current ATC rules might

not allow for varying speeds, the FAA is planning to role out new rules by 2025 that maybe

more adaptable to flying a dynamically changing speed.

Since the speeds are so dependent on aircraft drag coefficients and engine characteristics,

the best method proposed in this research might not be the same result for every airframe. The

aircraft drag is quite different between a small business jet, like the Gulfstream IV and a Boeing

747 and each of these methods is dependent on the value of the drag coefficient. Additionally,

the TSFC for each engine is different as is the transfer function of thrust to airspeed. Due to

the difference in performance based on altitude, long haul air transport aircraft and business

jets may find different results because they tend to fly at higher altitudes.

After analyzing the data from the sensitivity analysis, it was determined that for altitudes

less than 35,000 feet, a variation of approximately plus or minus 0.05 Mach was still within the

margin of error of the most efficient. The industry autothrottle is designed to track airspeeds

to within plus or minus 0.02 Mach, therefore the autothrottle does not negatively impact the

data at these altitudes. The sensitivity to slight changes in these speeds proposed seems to be

minimal.

The next disturbance was winds. The head wind and tail wind disturbances had a sig-

nificant impact on the fuel usage as expected. With a headwind burst the throttles would

advance the throttles to compensate for the decrease in speed and then reduce the throttles

once the burst had dissipated. As extra thrust is required to maintain the reference speed, the

fuel usage was negatively impacted. However, the tail wind bursts had the opposite effect on

the results. The impact of these bursts is unpredictable and probably cannot be avoided. To

anticipate this impact, the average wind speed could be taken into consideration when flight

planning. The results show that when six feet per second RMS turbulence was added the

performance was not impacted. The fuel consumption for these cases was within the margin
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of error of the case with no wind. This likely means that the industry autothrottle has been

appropriately designed and tuned to fly through moderate turbulence.

Several combinations of changes were made to the autothrottle control law used in these

simulations to reduce throttle activity. These changes included reducing the gain and removing

the trim parameter that is sent directly to the engine. By removing the trim parameter, the

amount of dead zone is increased before a change of thrust is commanded. None of these

changes resulted in a significant improvement to the initial results, in steady air or with winds

at several Mach numbers between 0.5 and 0.85. These changes were ineffective because prior

to this research the autothrottle was already tuned to match this aircraft. The two gain

programmers as well as the proportional and derivative gains would need to be adjusted when

applied to another aircraft. As the engine characteristics directly impact the gain programmers

and the dynamics of the aircraft, such as thrust-to-weight ratio, impact the other gains.

Several things were accomplished using the techniques in this research: various methods

for optimizing fuel were compared using the same airframe. The speed-based methods were

implemented using a practical process, however the thrust cases were more difficult to im-

plement practically because they require a specific value of thrust which is unknown during

flight. All of the practical methods were implemented using data available in a typical avionics

system and using controllers in a typical industry autothrottle. The thrust methods were also

implemented to determine if the performance increase warranted improvements to the system

to implement this method. Finally, simulations were also run with the airspeed references

constantly updated, even if that method is not practical in controlled airspace.

5.2 Limitations of the method

However, some things could not be accomplished in this study. Since the research was based

on a generic regional jet simulation, exact values for CD and CL were unknown. If a simulation

and real data for these parameters had been available from the airframe manufacturer, the data

would have been more accurate for the airframe. The values calculated in this research are

very specific to a particular airframe. Also, the data could not be validated with an actual

flight test.
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There were also things that ended up somewhat imperfectly. The greatest imperfection

was the engine simulation. The resolution of the fuel flow model created 40 pound increments

of weight change. These increments induced about 0.003 nmi/lb of error in the data. The

accuracy of the fuel-flow model of the engine could not be verified. There are inefficiencies in

the engine that can waste fuel when the fuel flow is adjusted, and the fuel flow is adjusted each

time the throttle position is changed. These inefficiencies may not be accurately modeled in

this simulation. Because the exact values of CD and CL were not available, estimates of these

terms were used. As such, they are still not quite matched to the generic simulation.

5.3 Practical implementation

There are three ways that these methods could be implemented on a real airplane. The

first implementation could be to add the algorithm to the FMS to continuously calculate the

optimal Mach number for the autothrottle to follow. When the crew is setting up the flight

plan, they could select the optimum Mach number as the speed for cruise flight. Another

method would be to include these values in the flight planning software used by airlines. This

would allow flight planners to consider both the altitude and speed at which each airplane is

flown. Once this speed and altitude are selected by the flight planner they can be uploaded

to the airplane via a data link or provided to the crew for entry into a flight plan. The latter

method would be used on older aircraft. The third possibility would be to include the algorithm

to calculate the optimum speed in the autothrottle. However, selection and deselection of the

speed becomes more difficult to implement. Regardless of which method is used, it is essential

to make it easy to deselect the speed in case the crew is directed to do so by ATC. Any of these

methods could be immediately implemented in industry, given sufficient resources. Using the

method of flight planning software would be easiest as it would not require recertifying the

aircraft.
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5.4 Future Work

In the future these equations could be applied to simulations of other airframes such as

business jets or air-transport-sized aircraft to see if the same equations provide the best Mach

number. Working directly with the airframe designer could also improve the results, since

they would know the correct values of the constants needed to derive these values. Once

the airframe is chosen, the speeds should be calculated using the constants for that airframe

and the autothrottle should be tuned to match the new airframe as well. Then these same

simulations could be performed, after that a method could be chosen to implement in flight

worthy software and flown during in a real flight test. This flight test would validate the

practical implementation discussed.

5.5 Summary

The results confirmed the first hypothesis that there is a specific speed, the optimum Mach

number, that will maximize range. However this speed might not be derived the same way

at each altitude. For this aircraft the recommendation is to fly the speed corresponding to

the minimum thrust. If ATC will allow the aircraft to fly at these speeds, less fuel will be

used. The key to making this result usable is to allow for the avionics (FMS/Autothrottle) or

a ground-based database to calculate the speed for the crew. Since there are millions of flights

per year in the United States alone, even small reductions in fuel consumption can have a large

impact on fuel expense. Since flights using the optimum Mach number technique will require

smaller fuel payloads, additional profitable payload can be added to each flight in the form of

passengers or cargo. Additionally, the reductions in fuel consumption will lower greenhouse

gas emissions from aircraft.

The second hypothesis was not confirmed in this study. It appears that the design of the

industry autothrottle performed quite well in this simulation. However if this method is applied

to other airframes, the autothrottle may need to be retuned to achieve the same performance.



www.manaraa.com

76

APPENDIX A. NOMENCLATURE

AR = Aspect ratio

b = Wing Span

CD = Coefficient of drag

CD0 = Drag coefficient at zero lift

CL = Coefficient of lift

cT = Thrust Specific Fuel Consumption (TSFC)

cT0 = TSFC constant at a given altitude

D = Drag

e = Oswald span efficiency factor

Em = Maximum lift-to-drag ratio with cambered wing

Em0 = Maximum lift-to-drag ratio without cambered wing

g = Gravity

h = Altitude

K = Induced drag factor

L = Lift

M = Mach number

m = Mass

ṁac = Change of mass of the aircraft

ṁf = Fuel mass flow rate

p = Pressure at altitude

R = Range

S = Wing area

T = Thrust
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TM = Maximum thrust

V = Velocity, true airspeed

W = Weight

β = TSFC Mach number exponent

γ = Specific heat ratio for air

δ = Throttle position

µ = ratio of the Mach number to the minimum drag Mach number

ρ = Atmospheric density
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APPENDIX B. ALL RESULTS

All of the data collected for each method with the Mach number rounded

to the nearest hundredth

Table B.1: Fuel used (nmi/lb) for each method with the Mach number rounded to the nearest
hundredth at 20,000 feet

Head Tail
Equation Mach No Winds Winds Winds Turbulence

Eq. 2.44 0.50 0.1744 0.1651 0.1831 0.1739
Eq. 2.44 constantly updated 0.50 0.1744 0.1652 0.1833 0.1742

Constant thrust 0.52 0.1459 0.1408 0.1510 0.1459
Two levels of thrust 0.52 0.1536 0.1478 0.1595 0.1536

Eq. 2.46 0.66 0.1575 0.1511 0.1634 0.1572
Eq. 2.47 average 0.54 0.1739 0.1653 0.1819 0.1734

Eq. 2.47 constantly updated 0.54 0.1740 0.1655 0.1825 0.1738
Eq. 2.49 0.52 0.1734 0.1658 0.1830 0.1743

Eq. 2.38 average 0.58 0.1699 0.1622 0.1772 0.1697
Eq. 2.38 constantly updated 0.54 0.1738 0.1654 0.1821 0.1736

Eq. 2.39 0.54 0.1729 0.1647 0.1809 0.1728
Cruise Mach 0.78 0.1386 0.1340 0.1431 0.1385
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Table B.2: Fuel used (nmi/lb) for each method with the Mach number rounded to the nearest
hundredth at 25,000 feet

Head Tail
Equation Mach No Winds Winds Winds Turbulence

Eq. 2.44 0.56 0.1927 0.1835 0.2016 0.1923
Eq. 2.44 constantly updated 0.56 0.1931 0.1837 0.2022 0.1929

Constant thrust 0.58 0.1588 0.1536 0.1640 0.1593
Two levels of thrust 0.58 0.1678 0.1619 0.1737 0.1679

Eq. 2.46 0.73 0.1723 0.1660 0.1783 0.1730
Eq. 2.47 average 0.60 0.1918 0.1833 0.2001 0.1915

Eq. 2.47 constantly updated 0.60 0.1928 0.1840 0.2013 0.1926
Eq. 2.49 0.58 0.1923 0.1834 0.2007 0.1933

Eq. 2.38 average 0.64 0.1862 0.1783 0.1936 0.1871
Eq. 2.38 constantly updated 0.60 0.1921 0.1835 0.2004 0.1932

Eq. 2.39 0.60 0.1908 0.1825 0.1989 0.1907
Cruise Mach 0.78 0.1636 0.1588 0.1698 0.1642

Table B.3: Fuel used (nmi/lb) for each method with the Mach number rounded to the nearest
hundredth at 30,000 feet

Head Tail
Equation Mach No Winds Winds Winds Turbulence

Eq. 2.44 0.62 0.2103 0.2011 0.2193 0.2117
Eq. 2.44 constantly updated 0.62 0.2108 0.2015 0.2199 0.2107

Constant thrust 0.65 0.1673 0.1620 0.1727 0.1674
Two levels of thrust 0.65 0.1798 0.1738 0.1857 0.1791

Eq. 2.46 0.82 0.1792 0.1733 0.1850 0.1790
Eq. 2.47 average 0.67 0.2096 0.2011 0.2179 0.2093

Eq. 2.47 constantly updated 0.67 0.2095 0.2009 0.2180 0.2110
Eq. 2.49 0.65 0.2093 0.2006 0.2178 0.2105

Eq. 2.38 average 0.70 0.2044 0.1966 0.2121 0.2056
Eq. 2.38 constantly updated 0.67 0.2101 0.2014 0.2186 0.2099

Eq. 2.39 0.67 0.2077 0.1995 0.2157 0.2075
Cruise Mach 0.78 0.1934 0.1866 0.1999 0.1932
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Table B.4: Fuel used (nmi/lb) for each method with the Mach number rounded to the nearest
hundredth at 35,000 feet

Head Tail
Equation Mach No Winds Winds Winds Turbulence

Eq. 2.44 0.70 0.2286 0.2196 0.2375 0.2285
Eq. 2.44 constantly updated 0.70 0.2283 0.2192 0.2374 0.2282

Constant thrust 0.73 0.1721 0.1667 0.1775 0.1731
Two levels of thrust 0.73 0.1844 0.1784 0.1903 0.1859

Eq. 2.46 0.85 0.1843 0.1784 0.1902 0.1852
Eq. 2.47 average 0.75 0.2277 0.2194 0.2360 0.2276

Eq. 2.47 constantly updated 0.75 0.2308 0.2222 0.2392 0.2291
Eq. 2.49 0.73 0.2298 0.2211 0.2383 0.2296

Eq. 2.38 average 0.77 0.2259 0.2193 0.2355 0.2273
Eq. 2.38 constantly updated 0.75 0.2289 0.2202 0.2375 0.2287

Eq. 2.39 0.75 0.2265 0.2197 0.2359 0.2265
Cruise Mach 0.78 0.2258 0.2178 0.2336 0.2256

Table B.5: Fuel used (nmi/lb) for each method with the Mach number rounded to the nearest
hundredth at 40,000 feet

Head Tail
Equation Mach No Winds Winds Winds Turbulence

Eq. 2.44 0.79 0.2491 0.2404 0.2578 0.2472
Eq. 2.44 constantly updated 0.79 0.2480 0.2392 0.2568 0.2479

Constant thrust 0.82 0.1797 0.1742 0.1852 0.1798
Two levels of thrust 0.82 0.1912 0.1851 0.1973 0.1921

Eq. 2.46 0.92 0.1733 0.1681 0.1784 0.1738
Eq. 2.47 average 0.86 0.1943 0.1881 0.2005 0.1953

Eq. 2.47 constantly updated 0.86 0.2145 0.2074 0.2215 0.2145
Eq. 2.49 0.82 0.2315 0.2236 0.2392 0.2299

Eq. 2.38 average 0.83 0.2186 0.2125 0.2271 0.2198
Eq. 2.38 constantly updated 0.85 0.2504 0.2400 0.2572 0.2467

Eq. 2.39 0.85 0.1959 0.1896 0.2022 0.1961
Cruise Mach 0.78 0.2497 0.2409 0.2585 0.2477
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All of the data collected for each method with the Mach number rounded
to the nearest thousandth

Table B.6: Fuel used (nmi/lb) for each method with the Mach number rounded to the nearest
thousandth at 20,000 feet

Head Tail
Equation Mach No Winds Winds Winds Turbulence

Eq. 2.44 0.501 0.1734 0.1643 0.1820 0.1743
Eq. 2.44 constantly updated 0.501 0.1741 0.1651 0.1833 0.1741

Eq. 2.46 0.659 0.1572 0.1517 0.1632 0.1578
Eq. 2.47 average 0.537 0.1737 0.1652 0.1818 0.1746

Eq. 2.47 constantly updated 0.537 0.1738 0.1653 0.1823 0.1738
Eq. 2.49 0.519 0.1743 0.1655 0.1827 0.1740

Eq. 2.38 average 0.579 0.1695 0.1628 0.1778 0.1702
Eq. 2.38 constantly updated 0.537 0.1739 0.1655 0.1820 0.1737

Cruise Mach 0.780 0.1387 0.1340 0.1431 0.1385

Table B.7: Fuel used (nmi/lb) for each method with the Mach number rounded to the nearest
thousandth at 25,000 feet

Head Tail
Equation Mach No Winds Winds Winds Turbulence

Eq. 2.44 0.557 0.1931 0.1838 0.2021 0.1928
Eq. 2.44 constantly updated 0.557 0.1929 0.1836 0.2020 0.1929

Eq. 2.46 0.578 0.1589 0.1537 0.1641 0.1592
Eq. 2.47 average 0.598 0.1922 0.1837 0.2004 0.1919

Eq. 2.47 constantly updated 0.598 0.1926 0.1839 0.2011 0.1925
Eq. 2.49 0.578 0.1930 0.1841 0.2016 0.1927

Eq. 2.38 average 0.640 0.1859 0.1792 0.1945 0.1868
Eq. 2.38 constantly updated 0.598 0.1920 0.1834 0.2003 0.1932

Cruise Mach 0.780 0.1636 0.1587 0.1698 0.1642
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Table B.8: Fuel used (nmi/lb) for each method with the Mach number rounded to the nearest
thousandth at 30,000 feet

Head Tail
Equation Mach No Winds Winds Winds Turbulence

Eq. 2.44 0.623 0.2110 0.2018 0.2200 0.2107
Eq. 2.44 constantly updated 0.623 0.2107 0.2015 0.2199 0.2108

Eq. 2.46 0.647 0.1668 0.1615 0.1721 0.1673
Eq. 2.47 average 0.647 0.1790 0.1730 0.1849 0.1797

Eq. 2.47 constantly updated 0.669 0.2094 0.2009 0.2179 0.2109
Eq. 2.49 0.647 0.2098 0.2011 0.2184 0.2111

Eq. 2.38 average 0.704 0.2040 0.1961 0.2116 0.2052
Eq. 2.38 constantly updated 0.669 0.2106 0.2019 0.2191 0.2104

Cruise Mach 0.780 0.1934 0.1866 0.1999 0.1932

Table B.9: Fuel used (nmi/lb) for each method with the Mach number rounded to the nearest
thousandth at 35,000 feet

Head Tail
Equation Mach No Winds Winds Winds Turbulence

Eq. 2.44 0.700 0.2283 0.2193 0.2372 0.2281
Eq. 2.44 constantly updated 0.700 0.2280 0.2190 0.2371 0.2281

Eq. 2.46 0.729 0.1715 0.1662 0.1769 0.1715
Eq. 2.47 average 0.729 0.1845 0.1786 0.1904 0.1845

Eq. 2.47 constantly updated 0.850 0.1844 0.1784 0.1903 0.1852
Eq. 2.49 0.729 0.2294 0.2208 0.2380 0.2293

Eq. 2.38 average 0.771 0.2259 0.2193 0.2354 0.2273
Eq. 2.38 constantly updated 0.754 0.2286 0.2199 0.2373 0.2286

Cruise Mach 0.780 0.2258 0.2178 0.2336 0.2256

Table B.10: Fuel used (nmi/lb) for each method with the Mach number rounded to the nearest
thousandth at 40,000 feet

Head Tail
Equation Mach No Winds Winds Winds Turbulence

Eq. 2.44 0.790 0.2491 0.2404 0.2578 0.2472
Eq. 2.44 constantly updated 0.790 0.2479 0.2391 0.2566 0.2479

Eq. 2.46 0.824 0.1797 0.1742 0.1852 0.1797
Eq. 2.47 average 0.824 0.1912 0.1851 0.1973 0.1921

Eq. 2.47 constantly updated 0.920 0.1733 0.1681 0.1784 0.1738
Eq. 2.49 0.859 0.1959 0.1896 0.2022 0.1969

Eq. 2.38 average 0.826 0.2229 0.2168 0.2317 0.2242
Eq. 2.38 constantly updated 0.852 0.2504 0.2417 0.2590 0.2467

Cruise Mach 0.780 0.2497 0.2409 0.2584 0.2477
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All of the data collected for each Mach number variation with the Mach
number rounded to the nearest hundredth

Table B.11: Fuel used (nmi/lb) for three methods with small Mach variations from the calcu-
lated value rounded to the nearest hundredth at 20,000 Feet

Eq. 2.47 Eq. 2.49 Eq. 2.38
Mach Fuel Used Mach Fuel Used Mach Fuel Used

0.537 0.1739 0.519 0.1734 0.579 0.1699
0.337 0.1514 0.319 0.1513 0.379 0.1514
0.362 0.1513 0.344 0.1512 0.404 0.1600
0.387 0.1544 0.369 0.1513 0.429 0.1677
0.412 0.1626 0.394 0.1543 0.454 0.1712
0.437 0.1689 0.419 0.1653 0.479 0.1739
0.487 0.1735 0.469 0.1731 0.529 0.1743
0.512 0.1739 0.494 0.1734 0.554 0.1734
0.527 0.1743 0.509 0.1738 0.569 0.1713
0.547 0.1734 0.529 0.1742 0.589 0.1675
0.562 0.1730 0.544 0.1738 0.604 0.1662
0.587 0.1677 0.569 0.1714 0.629 0.1619
0.637 0.1602 0.619 0.1629 0.679 0.1542

Table B.12: Fuel used (nmi/lb) for three methods with small Mach variations from the calcu-
lated value rounded to the nearest hundredth at 25,000 Feet

Eq. 2.47 Eq. 2.49 Eq. 2.38
Mach Fuel Used Mach Fuel Used Mach Fuel Used

0.598 0.1918 0.578 0.1923 0.640 0.1862
0.398 0.1654 0.378 0.1655 0.440 0.1753
0.423 0.1655 0.403 0.1654 0.465 0.1818
0.448 0.1795 0.428 0.1682 0.490 0.1887
0.473 0.1842 0.453 0.1794 0.515 0.1916
0.498 0.1909 0.478 0.1865 0.540 0.1931
0.548 0.1922 0.528 0.1927 0.590 0.1927
0.573 0.1931 0.553 0.1921 0.615 0.1910
0.588 0.1927 0.568 0.1918 0.630 0.1880
0.608 0.1910 0.588 0.1927 0.650 0.1843
0.623 0.1901 0.603 0.1918 0.665 0.1825
0.648 0.1843 0.628 0.1881 0.690 0.1788
0.698 0.1773 0.678 0.1803 0.740 0.1711
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Table B.13: Fuel used (nmi/lb) for three methods with small Mach variations from the calcu-
lated value rounded to the nearest hundredth at 30,000 Feet

Eq. 2.47 Eq. 2.49 Eq. 2.38
Mach Fuel Used Mach Fuel Used Mach Fuel Used

0.669 0.2096 0.647 0.2093 0.704 0.2044
0.469 0.1803 0.447 0.1803 0.504 0.1968
0.494 0.1944 0.472 0.1803 0.529 0.2032
0.519 0.2010 0.497 0.1968 0.554 0.2090
0.544 0.2070 0.522 0.2010 0.579 0.2114
0.569 0.2112 0.547 0.2090 0.604 0.2116
0.619 0.2103 0.597 0.2117 0.654 0.2092
0.644 0.2106 0.622 0.2103 0.679 0.2083
0.659 0.2095 0.637 0.2107 0.694 0.2070
0.679 0.2083 0.657 0.2094 0.714 0.2033
0.694 0.2070 0.672 0.2096 0.729 0.2000
0.719 0.2010 0.697 0.2045 0.754 0.1981
0.769 0.1952 0.747 0.1970 0.804 0.1868

Table B.14: Fuel used (nmi/lb) for three methods with small Mach variations from the calcu-
lated value rounded to the nearest hundredth at 35,000 Feet

Eq. 2.47 Eq. 2.49 Eq. 2.38
Mach Fuel Used Mach Fuel Used Mach Fuel Used

0.754 0.2277 0.729 0.2298 0.771 0.2259
0.554 0.2116 0.529 0.1942 0.571 0.2173
0.579 0.2192 0.554 0.2115 0.596 0.2229
0.604 0.2249 0.579 0.2192 0.621 0.2284
0.629 0.2283 0.604 0.2249 0.646 0.2279
0.654 0.2278 0.629 0.2283 0.671 0.2274
0.704 0.2286 0.679 0.2272 0.721 0.2283
0.729 0.2297 0.704 0.2286 0.746 0.2278
0.744 0.2296 0.719 0.2282 0.761 0.2276
0.764 0.2276 0.739 0.2295 0.781 0.2258
0.779 0.2258 0.754 0.2277 0.796 0.2157
0.804 0.2157 0.779 0.2258 0.821 0.2045
0.850 0.1843 0.829 0.1968 0.850 0.1843
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Table B.15: Fuel used (nmi/lb) for three methods with small Mach variations from the calcu-
lated value rounded to the nearest hundredth at 40,000 Feet

Eq. 2.47 Eq. 2.49 Eq. 2.38
Mach Fuel Used Mach Fuel Used Mach Fuel Used

0.859 0.1943 0.824 0.2315 0.826 0.2186
0.659 0.2338 0.624 0.2234 0.626 0.2233
0.684 0.2429 0.649 0.2284 0.651 0.2285
0.709 0.2436 0.674 0.2373 0.676 0.2429
0.734 0.2446 0.699 0.2421 0.701 0.2440
0.759 0.2451 0.724 0.2431 0.726 0.2446
0.809 0.2397 0.774 0.2464 0.776 0.2497
0.834 0.2185 0.799 0.2469 0.801 0.2469
0.849 0.2005 0.814 0.2396 0.816 0.2300
0.869 0.1887 0.834 0.2185 0.836 0.2096
0.884 0.1852 0.849 0.2005 0.851 0.2005
0.909 0.1752 0.874 0.1896 0.876 0.1852
0.920 0.1733 0.920 0.1733 0.920 0.1733

All of the data collected for each Mach number variation with the Mach
number rounded to the nearest thousandth

Table B.16: Fuel used (nmi/lb) for three methods with small Mach variations from the calcu-
lated value rounded to the nearest thousandth at 20,000 Feet

Eq. 2.47 Eq. 2.49 Eq. 2.38
Mach Fuel Used Mach Fuel Used Mach Fuel Used

0.537 0.1737 0.519 0.1743 0.579 0.1695
0.437 0.1685 0.319 0.1511 0.379 0.1511
0.337 0.1511 0.344 0.1511 0.404 0.1613
0.362 0.1511 0.369 0.1511 0.429 0.1668
0.387 0.1519 0.394 0.1574 0.454 0.1722
0.412 0.1629 0.419 0.1647 0.479 0.1733
0.487 0.1733 0.469 0.1727 0.529 0.1736
0.512 0.1742 0.494 0.1736 0.554 0.1731
0.527 0.1742 0.509 0.1735 0.569 0.1709
0.547 0.1733 0.529 0.1739 0.589 0.1681
0.562 0.1722 0.544 0.1739 0.604 0.1662
0.587 0.1686 0.569 0.1712 0.629 0.1615
0.637 0.1609 0.619 0.1628 0.679 0.1545
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Table B.17: Fuel used (nmi/lb) for three methods with small Mach variations from the calcu-
lated value rounded to the nearest thousandth at 25,000 Feet

Eq. 2.47 Eq. 2.49 Eq. 2.38
Mach Fuel Used Mach Fuel Used Mach Fuel Used

0.598 0.1922 0.578 0.1930 0.640 0.1859
0.398 0.1654 0.378 0.1654 0.440 0.1748
0.423 0.1655 0.403 0.1655 0.465 0.1818
0.448 0.1782 0.428 0.1678 0.490 0.1883
0.473 0.1848 0.453 0.1807 0.515 0.1914
0.498 0.1897 0.478 0.1857 0.540 0.1928
0.548 0.1925 0.528 0.1918 0.590 0.1923
0.573 0.1923 0.553 0.1917 0.615 0.1909
0.588 0.1917 0.568 0.1925 0.630 0.1878
0.608 0.1913 0.588 0.1920 0.650 0.1840
0.623 0.1895 0.603 0.1914 0.665 0.1825
0.648 0.1846 0.628 0.1887 0.690 0.1785
0.698 0.1775 0.678 0.1798 0.740 0.1708

Table B.18: Fuel used (nmi/lb) for three methods with small Mach variations from the calcu-
lated value rounded to the nearest thousandth at 30,000 Feet

Eq. 2.47 Eq. 2.49 Eq. 2.38
Mach Fuel Used Mach Fuel Used Mach Fuel Used

0.669 0.2093 0.647 0.2098 0.704 0.2040
0.469 0.1802 0.447 0.1802 0.504 0.1980
0.494 0.1962 0.472 0.1805 0.529 0.2041
0.519 0.2007 0.497 0.1973 0.554 0.2102
0.544 0.2067 0.522 0.2018 0.579 0.2106
0.569 0.2109 0.547 0.2079 0.604 0.2110
0.619 0.2099 0.597 0.2106 0.654 0.2102
0.644 0.2104 0.622 0.2110 0.679 0.2092
0.659 0.2106 0.637 0.2097 0.694 0.2052
0.679 0.2080 0.657 0.2099 0.714 0.2029
0.694 0.2055 0.672 0.2087 0.729 0.2007
0.719 0.2020 0.697 0.2050 0.754 0.1977
0.769 0.1949 0.747 0.1985 0.804 0.1855
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Table B.19: Fuel used (nmi/lb) for three methods with small Mach variations from the calcu-
lated value rounded to the nearest thousandth at 35,000 Feet

Eq. 2.47 Eq. 2.49 Eq. 2.38
Mach Fuel Used Mach Fuel Used Mach Fuel Used

0.754 0.2273 0.729 0.2294 0.771 0.2259
0.554 0.2132 0.529 0.1941 0.571 0.2173
0.579 0.2189 0.554 0.2132 0.596 0.2230
0.604 0.2244 0.579 0.2189 0.621 0.2284
0.629 0.2279 0.604 0.2244 0.646 0.2279
0.654 0.2274 0.629 0.2279 0.671 0.2275
0.704 0.2282 0.679 0.2286 0.721 0.2282
0.729 0.2294 0.704 0.2282 0.746 0.2295
0.744 0.2291 0.719 0.2296 0.761 0.2276
0.764 0.2272 0.739 0.2292 0.781 0.2258
0.779 0.2255 0.754 0.2274 0.796 0.2184
0.804 0.2128 0.779 0.2255 0.821 0.2045
0.850 0.1843 0.829 0.1976 0.850 0.1843

Table B.20: Fuel used (nmi/lb) for three methods with small Mach variations from the calcu-
lated value rounded to the nearest thousandth at 40,000 Feet

Eq. 2.47 Eq. 2.49 Eq. 2.38
Mach Fuel Used Mach Fuel Used Mach Fuel Used

0.859 0.1959 0.824 0.2252 0.826 0.2229
0.659 0.2312 0.624 0.2230 0.626 0.2237
0.684 0.2420 0.649 0.2280 0.651 0.2288
0.709 0.2429 0.674 0.2408 0.676 0.2414
0.734 0.2436 0.699 0.2436 0.701 0.2424
0.759 0.2444 0.724 0.2444 0.726 0.2432
0.809 0.2407 0.774 0.2476 0.776 0.2483
0.834 0.2166 0.799 0.2483 0.801 0.2472
0.849 0.2022 0.814 0.2360 0.816 0.2334
0.869 0.1901 0.834 0.2156 0.836 0.2135
0.884 0.1840 0.849 0.2024 0.851 0.2007
0.909 0.1764 0.874 0.1876 0.876 0.1871
0.920 0.1732 0.920 0.1732 0.920 0.1732
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APPENDIX C. MATLAB CODE

Matlab function used to calculate the singular arc

function [ Warc , Marc ] = s ingu larArcFunct ion ( a l t i t u d e S e l e c t i o n )
%This func t i on c a l c u l a t e s the s i n gu l a r arc
%based on an a l t i t u d e s e l e c t i o n .
%The a l t i t u d e i s s e l e c t e d acording to the f o l l ow i n g
%enumeration :
%a l t i t u d e S e l e c t i o n A l t i t u d e ( Ft )
%1 20 ,000
%2 25 ,000
%3 30 ,000
%4 35 ,000
%5 40 ,000

%parameters
S = 760 ; %f t ˆ2 , wing area
b = 7 6 . 2 5 ; %f t , wing span
AR = bˆ2/S ; %Aspect r a t i o
fuelLoadMax = 19450; %l b s
e f fFac = 0 . 8 5 ; %assumed Oswald span e f f c i e n c y
f = 1 1 . 5 ;
CD0 = f /S ; %drag c o e f f i c i e n t @ zero l i f t
K = 1/pi/ e f fFac /AR; %inducded drag f a c t o r

sqrtKOverCD0 = sqrt (K/CD0) ;

maxTkoWeight = 75750; %l b s
maxFuel = 19450; %l b s
maxFuelGal = maxFuel / 6 . 8 4 ; %ga l
%l b s , approximation o f c ru i s e we igh t
cru iseWeight = maxTkoWeight ∗ 0 . 9 5 5 ;

a l tVa lue s = [20000 , 25000 , 30000 , 35000 , 4 0 0 0 0 ] ;
m1AltValues = [ 1 0 3 6 . 9 , 1016 .1 , 994 .8 , 973 .1 , 9 6 8 . 1 ] ;
c ta lphaValues = [ 0 . 3 6 3 9 , 0 .3632 , 0 .3624 , 0 .3609 , 0 . 3 6 0 9 ] ;
a lphaValues = [ 1 . 2 0 1 , 1 .1807 , 1 .1598 , 1 .1413 , 1 . 1 3 5 7 ] ;
Vmin = [550 , 600 , 650 , 700 , 7 5 0 ] ;
Vmax = [650 , 700 , 750 , 800 , 8 5 0 ] ;
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W = 72300; %lbs , rounded va lue o f cruiseWeight
h = a l tVa lue s ( a l t i t u d e S e l e c t i o n ) ;
V = 0 ;
V = Vmin( a l t i t u d e S e l e c t i o n ) : 5 : Vmax( a l t i t u d e S e l e c t i o n ) ;
Marc = V. / m1AltValues ( a l t i t u d e S e l e c t i o n ) ;

%Atmospheric d en s i t y from nasa
i f h < 36152

T = 59 − 0.00356∗h ; %deg F, temperature
P = 2116 ∗ ( (T+459 .7 )/518 . 6 )ˆ5 . 256 ; %l b f / f t ˆ2 , pre s sure

else
T = −70; %deg F, temperature
P = 473.1 ∗ exp(1.73−0.000048 ∗ h ) ; %l b f / f t ˆ2 , pre s sure

end

rho = P/ (1718 ∗ (T + 4 5 9 . 7 ) ) ; %s l u g s / f t ˆ3 , d en s i t y

A = CD0 ∗ rho∗S /2 ;
B = 2∗K/rho/S ;
C T = 0 ;
C TV = 0 ;
Warc = 0 ;

for speedLoop = 1 : length (V)
C T = cta lphaValues ( a l t i t u d e S e l e c t i o n ) ∗ . . .

exp( alphaValues ( a l t i t u d e S e l e c t i o n ) ∗ . . .
V( speedLoop )/ m1AltValues ( a l t i t u d e S e l e c t i o n ) ) ;

C TV = cta lphaValues ( a l t i t u d e S e l e c t i o n ) ∗ . . .
a lphaValues ( a l t i t u d e S e l e c t i o n ) / . . .
m1AltValues ( a l t i t u d e S e l e c t i o n ) ∗ . . .
exp( alphaValues ( a l t i t u d e S e l e c t i o n ) ∗ . . .
V( speedLoop )/ m1AltValues ( a l t i t u d e S e l e c t i o n ) ) ;

Warc( speedLoop ) = V( speedLoop ) ˆ 2 ∗ . . .
sqrt (A∗(1+C TV∗V( speedLoop )/C T ) / . . .
(B∗(3−C TV∗V( speedLoop )/C T ) ) ) ;

end

Matlab script used to run the simulation of each method

%Simulat ion Sc r i p t
%This s c r i p t w i l l s e tup and run the a i r c r a f t s imu la t i on
%with each con t r o l and d i s tu r bance in the t e s t matrix .
runTime = 3600∗3;
%Run the i n i t i a l i z a t o n s c r i p t
a t S i m u l a t i o n I n i t
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%Ca lcu l a t e the de s i r ed Mach numbers from the Myose Paper
%Outputs Temp, MminThrust , and Mmax ClCd fo r each a l t i t u d e
MyosePaperCalc

%The f o l l ow i n g arrays are the Mach numbers
%ca l c u l a t e d f o r o ther s cenar i o s in the Myose paper

%Mach number f o r Max V(L/D)/TSFC at 72300 l b s
in i ta lMach = [ 0 . 53 6 6 6 8 , 0 .597958 , 0 . 6 6 9 3 0 5 , . . .

0 .754096 , 0 . 8 5 8 9 9 8 ] ;
%Mach number f o r Max V(L/D)/TSFC at 63118 l b s
f inalMach = [ 0 . 5 01 4 3 3 , 0 .558699 , 0 . 6 2 5 3 6 2 , . . .

0 .704586 , 0 . 7 9 6 0 6 1 ] ;
%Average Mach number Max V(L/D)/TSFC
avgMach = [ 0 . 5 6 1 7 4 9 , 0 .625904 , 0 . 7 0 0 5 8 5 , . . .

0 .789339 , 0 . 8 8 5 7 8 9 ] ;
%Mach number f o r Max (L/D)
maxLDMach = [ 0 . 5 1 90 5 1 , 0 .578329 , 0 . 6 4 7 3 3 3 , . . .

0 .729341 , 0 . 8 2 4 0 3 0 ] ;
%Approximate TLA va lue s f o r the Thrust Required
%at each a l t i t u d e used f o r s e t t i n g the cons tant
%Thrust from the Myose paper
t l aVa lue s = [ 5 8 , 58 . 5 , 59 , 60 , 6 3 ] ;

%Average Mach number from Cavcar Paper
avgMachC = [0 .51906817 , 0 .57836632 , 0 . 6 4 7 3 5 4 6 9 , . . .

0 .72938882 , 0 . 8 2 4 4 6 5 1 5 ] ;

%Ca lcu l a t i on o f S ingu la r Arc from Parge t t Paper
startMach = [0 . 53666787 , 0 .59795812 , 0 . 6 6 9 3 0 4 8 4 , . . .

0 .75409557 , 0 . 8 5 1 9 9 9 ] ;
endMach = [0 . 50143317 , 0 .55869944 , 0 . 6 2 5 3 6 1 9 2 , . . .

0 .70458575 , 0 . 7 9 6 0 6 0 9 1 ] ;

loopNum = 0 ;

%Al t i t u d e s under t e s t
a l tVa lue s = [20000 , 25000 , 30000 , 35000 , 4 0 0 0 0 ] ;

for altLoop = 1 : length ( a l tVa lue s )
I c A l t = a l tVa lue s ( altLoop ) ;
Ic Weight = 72300 ; %pounds

for contro lLoop = 1:11
asRefCalu lated = 0 ;
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asRefMinThrustReq = 0 ;
asRefMax = 0 ;
constantTla = 0 ;
Exte rna l Thro t t l e Input = 0 ;
switch contro lLoop

case 1
controlType = ’ Myose : V {minThrust } − . . .
I n i t Value ’ ;
Ic Mach = MminThrust ( altLoop ) ;
MachReference = Ic Mach ;
IcMachReference = Ic Mach ;

case 2
controlType = ’ Myose : V {minThrust } − . . .
Constant Update ’ ;
asRefCalu lated = 1 ;
asRefMinThrustReq = 1 ;
Ic Mach = MminThrust ( altLoop ) ;
MachReference = Ic Mach ;
IcMachReference = Ic Mach ;

case 3
controlType = ’ Myose : Constant Thrust ’ ;
Ic Mach = maxLDMach( altLoop ) ;
MachReference = Ic Mach ;
IcMachReference = Ic Mach ;
constantTla = 1 ;
Exte rna l Thro t t l e Input = 1 ;
l e f tThrot t l eStepTime = 3600 ;
l e f t T h r o t t l e I n i t i a l = t laVa lue s ( altLoop ) ;
l e f t T h r o t t l e F i n a l = t laVa lue s ( altLoop ) ;
r ightThrott leStepTime = 3600 ;
r i g h t T h r o t t l e I n i t i a l = t laVa lue s ( altLoop ) ;
r i g h t T h r o t t l e F i n a l = t laVa lue s ( altLoop ) ;

case 4
controlType = ’ Myose : Dual Thrust ’ ;
constantTla = 1 ;
Exte rna l Thro t t l e Input = 1 ;
l e f tThrot t l eStepTime = runTime /2 ;
l e f t T h r o t t l e I n i t i a l = t laVa lue s ( altLoop ) ;
l e f t T h r o t t l e F i n a l = t laVa lue s ( altLoop )−5;
r ightThrott leStepTime = runTime /2 ;
r i g h t T h r o t t l e I n i t i a l = t laVa lue s ( altLoop ) ;
r i g h t T h r o t t l e F i n a l = t laVa lue s ( altLoop )−5;

case 5
controlType = ’ Myose : Max V(L/D) ’ ;
Ic Mach = Mmax ClCd( altLoop ) ;
MachReference = Ic Mach ;
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IcMachReference = Ic Mach ;

case 6
controlType = ’ Myose : Max V(L/D) / . . .
TSFC−Average ’ ;
Ic Mach = in i ta lMach ( altLoop ) ;
MachReference = Ic Mach ;
IcMachReference = Ic Mach ;

case 7
controlType = ’ Myose : Max V(L/D) / . . .
TSFC−Constant Update ’ ;
asRefCalu lated = 1 ;
asRefMax = 1 ;
Ic Mach = avgMach( altLoop ) ;
MachReference = Ic Mach ;
IcMachReference = Ic Mach ;
Ic Mach = in i ta lMach ( altLoop ) ;
maxMach = [ f inalMach ( altLoop ) , . . .

in i ta lMach ( altLoop ) ] ;

case 8
controlType = ’ Cavcar : Average Mach ’ ;
Ic Mach = avgMachC( altLoop ) ;
MachReference = Ic Mach ;
IcMachReference = Ic Mach ;

case 9
controlType = ’ Pargett : Average Mach ’ ;
[ Warc , Marc ] = s ingu larArcFunct ion ( altLoop ) ;
Ic Mach = mean(Marc ) ;
MachReference = Ic Mach ;
IcMachReference = Ic Mach ;

case 10
controlType = ’ Pargett : S ingu la r Arc ’ ;
[ Warc , Marc ] = s ingu larArcFunct ion ( altLoop ) ;
asRefCalu lated = 1 ;
Ic Mach = startMach ( altLoop ) ;
MachReference = Ic Mach ;
IcMachReference = Ic Mach ;

case 11
controlType = ’ Cruise Mach ’ ;
Ic Mach = 0 . 7 8 ;
MachReference = Ic Mach ;
IcMachReference = Ic Mach ;

end %swi t ch − con t r o l
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i f I c A l t > 37000
mmoSim = 0 . 9 2 ;

else
mmoSim = 0 . 8 5 ;

end

i f Ic Mach > mmoSim
Ic Mach = mmoSim;

end

% Trim the a i r c r a f t to the s p e c i f i c IC cond i t i on s
Ic Tas=i a s 2 t a s ( [ Ic Mach , I c A l t ] ) ;
Trim Mode Req = 1 ;
sim ( ’ f c s s imAuto th ro t t l eA i r speedCru i s e ’ , 5 ) ; %
Trim Mode Req = 0 ;

for distLoop = 1 :4
windsTime = [ 0 , 1000 , 1060 , 4660 , 4720 , . . .

6500 , 6501 , 8500 , 8560 , runTime ] ;
windsSpeed = [ 0 , 0 , 0 , 0 , 0 , . . .

0 , 0 , 0 , 0 , 0 ] ;
windsEnbLngGust=0;
windsEnbLatGust=0;
windsEnbVrtGust=0;
switch distLoop

case 1
dis tTxt = ’None ’ ;

case 2
dis tTxt = ’Head Winds ’ ;
windsTime = [ 0 , 1000 , 1060 , 4660 , 4720 , . . .

6500 , 6501 , 8500 , 8560 , runTime ] ;
windsSpeed = [ 0 , 0 , 30 , 30 , 0 , . . .

0 , 30 , 30 , 0 , 0 ] ∗ 1 . 6 8 7 8 ;

case 3
dis tTxt = ’ Ta i l Winds ’ ;
windsTime = [ 0 , 1000 , 1060 , 4660 , 4720 , . . .

6500 , 6501 , 8500 , 8560 , runTime ] ;
windsSpeed = [ 0 , 0 , 30 , 30 , 0 , . . .

0 , 30 , 30 , 0 , 0 ]∗ −1.6878;
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case 4
dis tTxt = ’ Turbulence ’ ;
windsEnbLngGust=1;
windsEnbLatGust=1;
windsEnbVrtGust=1;

end %swi t ch − con t r o l

% Run the s imu la t i on
t ic
sim ( ’ f c s s imAuto th ro t t l eA i r speedCru i s e ’ , runTime ) ;
toc

% Save the data
f i leName=sprintf ( ’ au to th ro t t l eA i r s pe e dTes t %d %d %d ’ , . . .

altLoop , controlLoop , distLoop )
save ( f i leName , ’ p lo tout ’ , ’ I c A l t ’ , ’ Ic Mach ’ , . . .

’ d i s tTxt ’ , ’ controlType ’ ) ;

% Extrac t the l a b e l names
plotoutLabelNames = extractLabelNamesFunction ( p lo tout ) ;

% Plot the r e s u l t s
t i t leName=strrep ( f i leName , ’ ’ , ’ \ ’ ) ;
f igure (1 )
orient l andscape ;

subplot ( 6 , 1 , 1 )
plot ( p lo tout . time , p lo tout . s i g n a l s . va lue s ( : , 3 ) ) ;
hold on ;
plot ( p lo tout . time , p lo tout . s i g n a l s . va lue s ( : , 4 ) , ’m−− ’ ) ;
ylabel ( plotoutLabelNames ( 3 ) ) ;
xlabel ( sprintf ( ’%s shown in Pink −− Line ’ , . . .

plotoutLabelNames {4} ) )
t i t l e ( sprintf ( ’%s : Alt = %d Ft , Control Type = %s , . . .

Disturbance = %s \nMach = %0.3g , X−Dist %5.3 f nmi , . . .
Weight Fina l = %5.0 f l b s ’ , . . .
t it leName , I c Al t , controlType , distTxt , Ic Mach , . . .
max( p lo tout . s i g n a l s . va lue s ( : , 1 6 ) ) / 6 0 7 6 . 1 1 5 4 9 , . . .
p l o tout . s i g n a l s . va lue s ( length ( p lo tout . time ) , 1 7 ) ) ) ;

yl im ( [min( p lo tout . s i g n a l s . va lue s ( : , 3 ) ) − 0 . 0 1 , . . .
max( p lo tout . s i g n a l s . va lue s ( : , 3 ) ) + 0 . 0 1 ] ) ;

xl im ( [ 0 ,max( p lo tout . time ) ] ) ;
set (gca , ’ x t i c k l a b e l ’ , [ ] ) ;
grid on ; hold o f f ;
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subplot ( 6 , 1 , 2 )
plot ( p lo tout . time , p lo tout . s i g n a l s . va lue s ( : , 1 ) ) ;
hold on ;
plot ( p lo tout . time , p lo tout . s i g n a l s . va lue s ( : , 2 ) , ’m−− ’ ) ;
ylabel ( plotoutLabelNames ( 1 ) ) ;
xlabel ( sprintf ( ’%s shown in Pink −− Line ’ , . . .

plotoutLabelNames {2} ) )
xlim ( [ 0 ,max( p lo tout . time ) ] ) ;
set (gca , ’ x t i c k l a b e l ’ , [ ] ) ;
grid on ; hold o f f ;

subplot ( 6 , 1 , 3 )
plot ( p lo tout . time , p lo tout . s i g n a l s . va lue s ( : , 2 2 ) ) ;
hold on ;
plot ( p lo tout . time , p lo tout . s i g n a l s . va lue s ( : , 2 3 ) , ’m−− ’ ) ;
ylabel ( plotoutLabelNames ( 2 2 ) ) ;
xlabel ( sprintf ( ’%s shown in Pink −− Line ’ , . . .

plotoutLabelNames {23} ) )
ylim ( [min ( [ p lo tout . s i g n a l s . va lue s ( : , 2 2 ) ; . . .

p l o tout . s i g n a l s . va lue s ( : , 2 3 ) ] ) − 1 , . . .
max( [ p lo tout . s i g n a l s . va lue s ( : , 2 2 ) ; . . .
p l o tout . s i g n a l s . va lue s ( : , 2 3 ) ] ) + 1 ] ) ;

xl im ( [ 0 ,max( p lo tout . time ) ] ) ;
set (gca , ’ x t i c k l a b e l ’ , [ ] ) ;
grid on ; hold o f f ;

subplot ( 6 , 1 , 4 )
plot ( p lo tout . time , p lo tout . s i g n a l s . va lue s ( : , 7 ) ) ;
hold on ;
plot ( p lo tout . time , p lo tout . s i g n a l s . va lue s ( : , 5 ) , ’m−− ’ ) ;
ylabel ( sprintf ( ’%s \n ’ , plotoutLabelNames {7} ) ) ;
xlabel ( sprintf ( ’%s shown in Pink −− Line ’ , . . .

plotoutLabelNames {5} ) )
xlim ( [ 0 ,max( p lo tout . time ) ] ) ;
set (gca , ’ x t i c k l a b e l ’ , [ ] ) ;
grid on ; hold o f f ;

subplot ( 6 , 1 , 5 )
plot ( p lo tout . time , p lo tout . s i g n a l s . va lue s ( : , 9 ) ) ;
hold on ;
plot ( p lo tout . time , p lo tout . s i g n a l s . va lue s ( : , 1 1 ) , ’m−− ’ ) ;
ylabel ( sprintf ( ’%s \n ’ , plotoutLabelNames {9} ) ) ;
i f contro lLoop == 3

des i redThrust =0;
des i r edThrust ( 1 : length ( p lo tout . time ) ) = . . .
thrustForLDMax /2 ;
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plot ( p lo tout . time , des i redThrust , ’ c−. ’ ) ;
xlabel ( sprintf ( ’%s in Pink −− Line and Thrust . . .

f o r max L/D in Cyan −. Line ’ . . .
, plotoutLabelNames {1 1} ) ) ;

else
xlabel ( sprintf ( ’%s in Pink −− Line ’ , . . .
plotoutLabelNames {1 1} ) ) ;

end
ylim ( [min ( [ p lo tout . s i g n a l s . va lue s . . .

( 5 0 : length ( p lo tout . time ) , 9 ) ; . . .
p l o tout . s i g n a l s . va lue s ( . . .
50 : length ( p lo tout . time ) , 1 1 ) ] ) − 1 0 0 , . . .
max( [ p lo tout . s i g n a l s . va lue s . . .
( 5 0 : length ( p lo tout . time ) , 9 ) ; . . .
p l o tout . s i g n a l s . va lue s . . .
( 5 0 : length ( p lo tout . time ) , 1 1 ) ] ) + 1 0 0 ] )

xlim ( [ 0 ,max( p lo tout . time ) ] ) ;
set (gca , ’ x t i c k l a b e l ’ , [ ] ) ;
grid on ; hold o f f ;

subplot ( 6 , 1 , 6 )
plot ( p lo tout . time , p lo tout . s i g n a l s . va lue s ( : , 2 0 ) ) ;
hold on ;
plot ( p lo tout . time , p lo tout . s i g n a l s . va lue s ( : , 2 4 ) , ’m−− ’ ) ;
ylabel ( plotoutLabelNames ( 2 0 ) ) ;
xlabel ( sprintf ( ’Time ( Sec )\n . . .

%s shown in Pink −− Line ’ , . . .
plotoutLabelNames {24} ) )

ylim ( [min ( [ p lo tout . s i g n a l s . va lue s . . .
( 2 : length ( p lo tout . time ) , 2 0 ) ; . . .

p l o tout . s i g n a l s . va lue s . . .
( 2 : length ( p lo tout . time ) , 2 4 ) ] ) − 1 0 , . . .
max( [ p lo tout . s i g n a l s . va lue s . . .
( 2 : length ( p lo tout . time ) , 2 0 ) ; . . .
p l o tout . s i g n a l s . va lue s . . .
( 2 : length ( p lo tout . time ) , 2 4 ) ] ) + 1 0 ] ) ;

xl im ( [ 0 ,max( p lo tout . time ) ] ) ;
grid on ; hold o f f ;

i f altLoop == 1 && contro lLoop == 1 && distLoop == 1
print ( ’−dpsc ’ , ’−r600 ’ , ’ a tAir speedPlot1 ’ ) ;

else
print ( ’−dpsc ’ , ’−r600 ’ , ’−append ’ , ’ a tAir speedPlot1 ’ ) ;

end
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f igure (2 )
orient l andscape ;

subplot ( 5 , 1 , 1 )
rhoCalc = 0 ;
c l = 0 ;
cd = 0 ;
c l c d c a l c = 0 ;
c l cd = 0 ;
rhoCalc = p lo tout . s i g n a l s . va lue s ( : , 1 8 ) / . . .

(1718 ∗ (Temp( altLoop ) + 4 5 9 . 7 ) ) ;
c l = p lo tout . s i g n a l s . va lue s ( : , 1 7 ) . / ( . 5 ∗ S∗ rhoCalc . ∗ . . .

( p lo tout . s i g n a l s . va lue s ( : , 1 9 ) . ∗ 1 . 6 8 7 8 ) . ˆ 2 ) ;
plot ( p lo tout . time , p lo tout . s i g n a l s . va lue s ( : , 1 5 ) ) ;
hold on ;
plot ( p lo tout . time , c l , ’m−− ’ ) ;
ylabel ( sprintf ( ’C L ’ ) ) ;
xlabel ( sprintf ( ’ Estimated C L in Pink −− Line ’ ) )
t i t l e ( sprintf ( ’%s : Alt = %d Ft , Control Type = %s , . . .

Disturbance = %s , Mach = %0.3g , X−Dist %7.5 f nmi , . . .
Weight Fina l = %5.0 f l b s ’ , . . .
t it leName , I c Al t , controlType , distTxt , Ic Mach , . . .
max( p lo tout . s i g n a l s . va lue s ( : , 1 6 ) ) / 6 0 7 6 . 1 1 5 4 9 , . . .
p l o tout . s i g n a l s . va lue s ( length ( p lo tout . time ) , 1 7 ) ) ) ;

xl im ( [ 0 ,max( p lo tout . time ) ] ) ;
grid on ; hold o f f ;

subplot ( 5 , 1 , 2 )
cd = CD0+K.∗ c l . ˆ 2 ;
plot ( p lo tout . time , p lo tout . s i g n a l s . va lue s ( : , 1 4 ) ) ;
hold on ;
plot ( p lo tout . time , cd , ’m−− ’ ) ;
ylabel ( sprintf ( ’C D ’ ) ) ;
xlabel ( sprintf ( ’ Estimated C D in Pink −− Line ’ ) )

xlim ( [ 0 ,max( p lo tout . time ) ] ) ;
grid on ; hold o f f ;

subplot ( 5 , 1 , 3 )
c l c d c a l c = c l . / cd ;
c l cd = plo tout . s i g n a l s . va lue s ( : , 1 5 ) . / . . .

p l o tout . s i g n a l s . va lue s ( : , 1 4 ) ;
plot ( p lo tout . time , c l cd ) ; hold on ;
plot ( p lo tout . time , c l c d c a l c , ’m−− ’ ) ;
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ylabel ( ’C L\\C D ’ ) ;
xlabel ( ’ Estimated C L\\C D in Pink −− Line ’ ) ;
xl im ( [ 0 ,max( p lo tout . time ) ] ) ;
set (gca , ’ x t i c k l a b e l ’ , [ ] ) ;
grid on ; hold o f f ;

subplot ( 5 , 1 , 4 )
t s f c L e f t = p lo tout . s i g n a l s . va lue s ( : , 9 ) . / . . .

p l o tout . s i g n a l s . va lue s ( : , 1 1 ) ;
t s f c R i g h t = plo tout . s i g n a l s . va lue s ( : , 1 0 ) . / . . .

p l o tout . s i g n a l s . va lue s ( : , 1 2 ) ;
plot ( p lo tout . time , t s f c L e f t ) ; hold on ;
plot ( p lo tout . time , t s f cR ight , ’m−− ’ ) ;
ylabel ( ’TSFC Le f t ’ ) ;
xlabel ( sprintf ( ’TSFC Right in Pink −− Line ’ ) ) ;
xl im ( [ 0 ,max( p lo tout . time ) ] ) ;
grid on ; hold o f f ;

subplot ( 5 , 1 , 5 )
u c l c d t s f c = 0 ;
u c l c d t s f c C a l c = 0 ;
u c l c d t s f c = p lo tout . s i g n a l s . va lue s ( : , 1 9 ) . . .

. ∗ 1 . 6 8 7 8 . ∗ c l cd . / ( t s f c L e f t ) ;
u c l c d t s f c C a l c = p lo tout . s i g n a l s . va lue s ( : , 1 9 ) . . .

. ∗ 1 . 6 8 7 8 . ∗ c l c d c a l c . / ( t s f c L e f t ) ;
plot ( p lo tout . time , u c l c d t s f c ) ; hold on ;
plot ( p lo tout . time , uc l cd t s f cCa l c , ’m−− ’ ) ;
ylabel ( sprintf ( ’V(L/D)/TSFC ’ ) ) ;
xlabel ( sprintf . . .

( ’Time ( Sec )\ nEstimated V(L/D)/TSFC . . .
in Pink −− Line ’ ) ) ;

xl im ( [ 0 ,max( p lo tout . time ) ] ) ;
grid on ; hold o f f ;

loopNum = loopNum+1;
re su l tData {loopNum,1}= sprintf . . .

( ’%s : Alt = %d Ft , Control Type = %s , . . .
Disturbance = %s , Mach = %4.3 f , . . .
X−Dist %5.3 f nmi , . . .
Weight Fina l = %5.0 f l b s ’ , . . .
f i leName , I c Al t , controlType , distTxt , Ic Mach , . . .
max( p lo tout . s i g n a l s . va lue s ( : , 1 6 ) ) / 6 0 7 6 . 1 1 5 4 9 , . . .
p l o tout . s i g n a l s . va lue s ( length ( p lo tout . time ) , 1 7 ) ) ;

i f altLoop == 1 && contro lLoop == 1 && distLoop == 1
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print ( ’−dpsc ’ , ’−r600 ’ , ’ a tAir speedPlot2 ’ ) ;
else

print ( ’−dpsc ’ , ’−r600 ’ , ’−append ’ , ’ a tAir speedPlot2 ’ ) ;
end

end %dis tLoop
end %contro lLoop

end %altLoop

save ( ’ atAirspeedTestCaseData ’ , ’ r e su l tData ’ ) ;
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